Eurasian Journal of Soil Science

Volume 10, Issue 3, Jul 2021, Pages 179-190
DOI: 10.18393/ejss.868088
Stable URL: http://ejss.fess.org/10.18393/ejss.868088
Copyright © 2021 The authors and Federation of Eurasian Soil Science Societies



Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region

X

Article first published online: 25 Jan 2021 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 150 | 813

Chebykina (Maksimova),E., Alekseev,I., Abakumov,E., 2021. Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region. Eurasian J Soil Sci 10(3):179-190. DOI : 10.18393/ejss.868088
Chebykina (Maksimova),E.,Alekseev,I.,& Abakumov,E. Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region Eurasian Journal of Soil Science, 10(3):179-190. DOI : 10.18393/ejss.868088
Chebykina (Maksimova),E.,Alekseev,I., and ,Abakumov,E."Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region" Eurasian Journal of Soil Science, 10.3 (2021):179-190. DOI : 10.18393/ejss.868088
Chebykina (Maksimova),E.,Alekseev,I., and ,Abakumov,E. "Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region" Eurasian Journal of Soil Science,10(Jul 2021):179-190 DOI : 10.18393/ejss.868088
E,Chebykina (Maksimova).I,Alekseev.E,Abakumov "Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region" Eurasian J. Soil Sci, vol.10, no.3, pp.179-190 (Jul 2021), DOI : 10.18393/ejss.868088
Chebykina (Maksimova),Ekaterina ;Alekseev,Ivan ;Abakumov,Evgeny Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region. Eurasian Journal of Soil Science, (2021),10.3:179-190. DOI : 10.18393/ejss.868088

How to cite

Chebykina (Maksimova), E., Alekseev, I., Abakumov, E., 2021. Laboratory assessment of soil respiration rates under the impact of ornithogenic factor in Antarctic region. Eurasian J. Soil Sci. 10(3): 179-190. DOI : 10.18393/ejss.868088

Author information

Ekaterina Chebykina (Maksimova) , Department of Applied Ecology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia Saint-Petersburg, Russia
Ivan Alekseev , Department of Applied Ecology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
Evgeny Abakumov , Department of Applied Ecology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia

Publication information

Article first published online : 25 Jan 2021
Manuscript Accepted : 15 Jan 2021
Manuscript Received: 07 Oct 2020
DOI: 10.18393/ejss.868088
Stable URL: http://ejss.fesss.org/10.18393/ejss.868088

Abstract

SOM stabilization rates were estimated in the soils of Antarctic region in case of influence of ornithogenic factor. Soils in large penguin clusters, near nests of Stercorarius sp., as well as soils located in geochemically subordinate positions (also often are visited by birds) were found to be characterized by an increased content of carbon and nitrogen with a rather narrow ratio of C/N. The pH values decreased in ornithogenic soils due to the organic acids that produced plants (mosses, Deschampsia antarctica) inhabit these soils and the decomposition products of the organic matter guano. The amount of CO2, in general, released over the entire experiment period is quite large for both ornithogenic and non-ornithogenic soils. CO2 emission rates were the highest in ornithogenic soils. Ornithogenic soils of the studied area are characterized by the most stabilized organic matter. Thus, the avifauna favors and increases the rate of the mineralization process by several times. An acceleration in the organic matter mineralization rate leads to an increase in nutrients amount available to plants, as in the case of the studied soils. The quality of initial SOM is of a great importance in post-ornithogenic environments. Therefore, further researches of CO2 emissions rates are needed to characterize post-ornithogenic dynamics and develop an approach to model this process.

Keywords

Antarctic region, CO2 emission, mineralization rate, ornithogenic factor, soil respiration.

Corresponding author

References

Abakumov, E., Alekseev, I., 2018. Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth 9: 1329-1339.

Abakumov, E., Mukhametova, N., 2014. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth 5: 705-712.

Abakumov, E.V., 2010. The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science 43: 499-508.

Abakumov, E.V., 2014a. Micromorphological characteristics of ornithogenic soil formation in Antarctica. Russian Ornithology Journal 23(1030): 2353-2357. [in Russian].

Abakumov, E.V., 2014b. Zoogenic pedogenesis as the main biogenic soil process in Antarctica. Russian Ornithology Journal 23(972): 576-584. [in Russian].

Abakumov, E.V., 2018. Birds role in nutrient regime formation in soils of the Fildes Peninsula (West Antarctica). Russian Ornithology Journal 27(1623): 2757-2760. [in Russian].

Abakumov, E.V., Fattakhova, Yu.M., 2015. Structural composition of humic substances in ornithogenic soils of Antarctica according to nuclear magnetic resonance (13-C). Russian Ornithology Journal 24(1165): 2463-2466. [in Russian].

Abakumov, E.V., Lupachev, A.V., 2011/2012. Soil diversity of Antarctic terrestrial ecosystems (in the areas of Russian Antarctic Stations). Ukrainian Antarctic Journal 10-11: 222-228.

Abakumov, E.V., Lupachev, A.V., Parnikoza, I.Yu., 2018. Ornithogenic soils of Antarctica: diversity, properties, functioning. Proceedings of III International Scientific and Practical Conference "The Natural Environment of Antarctica: Environmental Problems and Protection". 17-19 September 2018. Belarus. pp. 59-61.

Abakumov, E.V., Parnikoza, I.Y., Vlasov, D.Yu., Lupachev, A.V., 2016. Biogenic–abiogenic interaction in Antarctic ornithogenic soils. In: Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Frank-Kamenetskaya, O.V., Panova, E.G., Vlasov, D.Yu. (Eds.). Springer, pp. 237-248.

Alekseev, I., Abakumov, E., 2020b. Permafrost table depth in soils of Eastern Antarctica oases, King George and Ardley Islands (South Shetland Islands). Czech Polar Reports 10(1): 7-22.

Alekseev, I., Zverev, A., Abakumov, E., 2020. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: environmental controls and effect of human impact. Microorganisms 8(8): 1202.

Alekseev, I.I., Abakumov, E.V., 2018. Acid-alkali properties and mesomorphological organization of soils in maritime Antarctica: Fildes Peninsula (King George Island) and Ardley Island (South Shetland Islands). Russian Ornithology Journal 27(1653): 3911-3918. [in Russian].

Alekseev, I.I., Abakumov, E.V., 2020a. Ornithogenic soils of the Antarctic Maritimo: genesis, chemical composition, organic matter. Abstracts of International Scientific Conference “Comprehensive Research of the Natural Environment of the Arctic and Antarctic”. 2-4 March 2020. Saint Petersburg. Russia. pp. 170-172. [in Russian].

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties, Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Bockheim, J.G., 2013. Paleosols in the Transantarctic Mountains: indicators of environmental change. Solid Earth 4: 451-459.

Bruun, T.B., Elberling, B., de Neergaard, A., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Ecosystems 26(3): 272-283.

Campbell, I.B., Claridge, G.G.C., 1987. Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam. 367p.

Debasish-Sasha, Kukal, S.S., Bawa, S.S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded shiwaliks hills of lower Hymalayas. Land Degradation and Devevelopment 25(5): 407-416.

Dmitrakova, J., Abakumov, E., 2019. Dynamics of soil organic carbon of reclaimed lands and the related ecological risks to the additional CO2 emission. In: Urbanization: challenge and opportunity for soil functions and ecosystem services. Proceedings of the 9th SUITMA Congress. Vasenev V., Dovletyarova E., Cheng Z., Prokof’eva T., Morel J., Ananyeva, N. (Eds.). Springer Geography. Springer, pp. 97-105.

Ejarque, E., Abakumov, E., 2016. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 7: 153-165.

IPCC, 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.). Cambridge, United Kingdom, New York, USA. 996p. Available at [Access date: 07.10.2020]: https://archive.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf

Ivanov, A.N., 2013. Ornithogenic geosystems of the North Pacific islands. Moscow. 228p. [in Russian].

Ivanov, A.N., Avessalomova, I.A., 2012. Ornitogenous ecosystems as a geochemical phenomenon of the biosphere. Biosphere 4(4): 385-396. [in Russian].

Kadono, A., Funakawa, S., Kosaki, T., 2009. Factors controlling potentially mineralizable and recalcitrant soil organic matter in humid Asia. Soil Science Plant Nutrition 55(2): 243-251.

Michel, R.F.M., Schaefer, C.E.G.R., Dias, L.E., Simas, F.N.B., Benites, V.M., Mendonça, E.S., 2006. Ornithogenic gelisols (cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal 70(4): 1370-1376.

Muñoz-Rojas, M., Jordán, A., Zavala, L.M., De la Rosa, D., Abd-Elmabod, S.K., Anaya-Romero, M., 2015. Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land Degradation and Development 26(2): 168-179.

Novara, A., Rühl, J., La Mantia, T., Gristina, L., La Bella, S., Tuttolomondo, T., 2015. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 6: 425-432.

Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., Kozeretska, I., 2016. Soils of the Argentine Islands, Antarctica: diversity and characteristics. Polarforschung 86(2): 83-96.

Parnikoza, I.Yu., Abakumov, E.V., Dikiy, I.V., Pilipenko, D.V., Shvidun, P.P., Kozeretskaya, I.A., Kunakh, V.A., 2015. Birds influence on the spatial distribution of Deschampsia antarctica Desv. of Galindez Islands (Argentine Islands, Coastal Antarctica). Bulletin of St. Petersburg State University. Ser. 3: Biology (1): 78-97. [in Russian].

Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections. Journal of Environmental Management 155: 219-228.

Peng, F., Quangang, Y., Xue, X., Guo, J., Wang, T., 2015. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth 6: 303-310.

Pereira, T.T.C., Schaefer, C.E.G.R., Ker, J.C., Almeida, C.C., Aimeida, I.C.C., 2013. Micromorphological and microchemical indicators of pedogenesis in Ornithogenic Cryosols (Gelisols) of Hope Bay, Antarctic Peninsula. Geoderma 193/194: 311-322.

Rein, G., 2013. Smouldering fires and natural fuels. In: Fire phenomena and the earth system: an interdisciplinary guide to fire science. Belcher, C.M. (Ed.). John Wiley & Sons, Oxford. pp.15-33.

Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost carbon feedback. Nature 520: 171-179.

Semenov, V.M., Ivannikova, L.A., Kuznetsova, T.V., Semenova, N.A., Tulina, A.S., 2008. Mineralization of organic matter and the carbon sequestration capacity of zonal soils. Eurasian Soil Science 41: 717-730.

Semenov, V.M., Ivannikova, L.A., Tulina, A.S., 2009. Stabilization of organic matter in the soil. Agrochemistry 10: 77-96. [in Russian].

Shishov, L.L., Tonkonogov, V.D., 2004. Classification and diagnostics of Russian soils. Soil Institute of Dokuchayev, Moscow, Russia. 341p. [in Russian].

Simas, F.N.B., Schaefer, C.E.G.R., Filho, M.R.A., Francelino, M.R., Filho, E.I.F., da Costa, L.M., 2008. Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144: 116-122.

Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., Gomes M.R.M., da Costa, L.M., 2007a. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma 138(3-4): 191-203.

Simas, F.N.B., Schaefer, C.E.G.R., Mendonca, E.S., Silva, I.R., Santana, R.M., Ribeiro, A.S.S., 2007b. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica. Journal of research of the U.S. Geological Survey 1047: 76-79.

Six, J., Frey S.D., Thrieth, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70(2): 555-569.

Swift, R.S., 2001. Sequestration of carbon by soil. Soil Science 166(11): 858-871.

Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., Convey, P., Bergstrom, D.M., 2012. Conservation biogeography of the Antarctic. Diversity and Distributions 18(7): 726-741.

Tsibart, A., Gennadiev, A., Koshovskii, T., Watts, A., 2014. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth 5: 1305-1317.

Ugolini, F.C., Bockheim, J.G., 2008. Antarctic soils and soils formation in a changing environment: A review. Geoderma 144(1-2): 1-8.

Vorobyova, L.A., 2006. Theory and practice of the chemical soil analysis. GEOS, Moscow, Russia. 400p. [in Russian].

Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth 6: 1103-1115.

WRB, 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 192p. Available at [access date: 07.10.2020]: http://www.fao.org/3/i3794en/I3794en.pdf

Yu, B., Stott, P., Di, X.Y., Yu, H.X., 2012. Assessment of land cover changes and their effect on soil organic carbon and soil total nitrogen in Daqing Prefecture, China. Land Degradation and Development 25(6): 520-531.

Zaccone, C., Rein, G., D’Orazio, V., Hadden, R.M., Belcher, C.M., Miano, T.M., 2014. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica et Cosmochimica Acta 137: 134-146.

Zhao, H., Tong, D.Q., Lin, Q., Lu, X., Wang, G., 2012. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189-190: 532-539.

Abstract

SOM stabilization rates were estimated in the soils of Antarctic region in case of influence of ornithogenic factor. Soils in large penguin clusters, near nests of Stercorarius sp., as well as soils located in geochemically subordinate positions (also often are visited by birds) were found to be characterized by an increased content of carbon and nitrogen with a rather narrow ratio of C/N. The pH values decreased in ornithogenic soils due to the organic acids that produced plants (mosses, Deschampsia antarctica) inhabit these soils and the decomposition products of the organic matter guano. The amount of CO2, in general, released over the entire experiment period is quite large for both ornithogenic and non-ornithogenic soils. CO2 emission rates were the highest in ornithogenic soils. Ornithogenic soils of the studied area are characterized by the most stabilized organic matter. Thus, the avifauna favors and increases the rate of the mineralization process by several times. An acceleration in the organic matter mineralization rate leads to an increase in nutrients amount available to plants, as in the case of the studied soils. The quality of initial SOM is of a great importance in post-ornithogenic environments. Therefore, further researches of CO2 emissions rates are needed to characterize post-ornithogenic dynamics and develop an approach to model this process.

Keywords: Antarctic region, CO2 emission, mineralization rate, ornithogenic factor, soil respiration.

References

Abakumov, E., Alekseev, I., 2018. Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth 9: 1329-1339.

Abakumov, E., Mukhametova, N., 2014. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth 5: 705-712.

Abakumov, E.V., 2010. The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science 43: 499-508.

Abakumov, E.V., 2014a. Micromorphological characteristics of ornithogenic soil formation in Antarctica. Russian Ornithology Journal 23(1030): 2353-2357. [in Russian].

Abakumov, E.V., 2014b. Zoogenic pedogenesis as the main biogenic soil process in Antarctica. Russian Ornithology Journal 23(972): 576-584. [in Russian].

Abakumov, E.V., 2018. Birds role in nutrient regime formation in soils of the Fildes Peninsula (West Antarctica). Russian Ornithology Journal 27(1623): 2757-2760. [in Russian].

Abakumov, E.V., Fattakhova, Yu.M., 2015. Structural composition of humic substances in ornithogenic soils of Antarctica according to nuclear magnetic resonance (13-C). Russian Ornithology Journal 24(1165): 2463-2466. [in Russian].

Abakumov, E.V., Lupachev, A.V., 2011/2012. Soil diversity of Antarctic terrestrial ecosystems (in the areas of Russian Antarctic Stations). Ukrainian Antarctic Journal 10-11: 222-228.

Abakumov, E.V., Lupachev, A.V., Parnikoza, I.Yu., 2018. Ornithogenic soils of Antarctica: diversity, properties, functioning. Proceedings of III International Scientific and Practical Conference "The Natural Environment of Antarctica: Environmental Problems and Protection". 17-19 September 2018. Belarus. pp. 59-61.

Abakumov, E.V., Parnikoza, I.Y., Vlasov, D.Yu., Lupachev, A.V., 2016. Biogenic–abiogenic interaction in Antarctic ornithogenic soils. In: Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Frank-Kamenetskaya, O.V., Panova, E.G., Vlasov, D.Yu. (Eds.). Springer, pp. 237-248.

Alekseev, I., Abakumov, E., 2020b. Permafrost table depth in soils of Eastern Antarctica oases, King George and Ardley Islands (South Shetland Islands). Czech Polar Reports 10(1): 7-22.

Alekseev, I., Zverev, A., Abakumov, E., 2020. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: environmental controls and effect of human impact. Microorganisms 8(8): 1202.

Alekseev, I.I., Abakumov, E.V., 2018. Acid-alkali properties and mesomorphological organization of soils in maritime Antarctica: Fildes Peninsula (King George Island) and Ardley Island (South Shetland Islands). Russian Ornithology Journal 27(1653): 3911-3918. [in Russian].

Alekseev, I.I., Abakumov, E.V., 2020a. Ornithogenic soils of the Antarctic Maritimo: genesis, chemical composition, organic matter. Abstracts of International Scientific Conference “Comprehensive Research of the Natural Environment of the Arctic and Antarctic”. 2-4 March 2020. Saint Petersburg. Russia. pp. 170-172. [in Russian].

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties, Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Bockheim, J.G., 2013. Paleosols in the Transantarctic Mountains: indicators of environmental change. Solid Earth 4: 451-459.

Bruun, T.B., Elberling, B., de Neergaard, A., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Ecosystems 26(3): 272-283.

Campbell, I.B., Claridge, G.G.C., 1987. Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam. 367p.

Debasish-Sasha, Kukal, S.S., Bawa, S.S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded shiwaliks hills of lower Hymalayas. Land Degradation and Devevelopment 25(5): 407-416.

Dmitrakova, J., Abakumov, E., 2019. Dynamics of soil organic carbon of reclaimed lands and the related ecological risks to the additional CO2 emission. In: Urbanization: challenge and opportunity for soil functions and ecosystem services. Proceedings of the 9th SUITMA Congress. Vasenev V., Dovletyarova E., Cheng Z., Prokof’eva T., Morel J., Ananyeva, N. (Eds.). Springer Geography. Springer, pp. 97-105.

Ejarque, E., Abakumov, E., 2016. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 7: 153-165.

IPCC, 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.). Cambridge, United Kingdom, New York, USA. 996p. Available at [Access date: 07.10.2020]: https://archive.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf

Ivanov, A.N., 2013. Ornithogenic geosystems of the North Pacific islands. Moscow. 228p. [in Russian].

Ivanov, A.N., Avessalomova, I.A., 2012. Ornitogenous ecosystems as a geochemical phenomenon of the biosphere. Biosphere 4(4): 385-396. [in Russian].

Kadono, A., Funakawa, S., Kosaki, T., 2009. Factors controlling potentially mineralizable and recalcitrant soil organic matter in humid Asia. Soil Science Plant Nutrition 55(2): 243-251.

Michel, R.F.M., Schaefer, C.E.G.R., Dias, L.E., Simas, F.N.B., Benites, V.M., Mendonça, E.S., 2006. Ornithogenic gelisols (cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal 70(4): 1370-1376.

Muñoz-Rojas, M., Jordán, A., Zavala, L.M., De la Rosa, D., Abd-Elmabod, S.K., Anaya-Romero, M., 2015. Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land Degradation and Development 26(2): 168-179.

Novara, A., Rühl, J., La Mantia, T., Gristina, L., La Bella, S., Tuttolomondo, T., 2015. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 6: 425-432.

Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., Kozeretska, I., 2016. Soils of the Argentine Islands, Antarctica: diversity and characteristics. Polarforschung 86(2): 83-96.

Parnikoza, I.Yu., Abakumov, E.V., Dikiy, I.V., Pilipenko, D.V., Shvidun, P.P., Kozeretskaya, I.A., Kunakh, V.A., 2015. Birds influence on the spatial distribution of Deschampsia antarctica Desv. of Galindez Islands (Argentine Islands, Coastal Antarctica). Bulletin of St. Petersburg State University. Ser. 3: Biology (1): 78-97. [in Russian].

Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections. Journal of Environmental Management 155: 219-228.

Peng, F., Quangang, Y., Xue, X., Guo, J., Wang, T., 2015. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth 6: 303-310.

Pereira, T.T.C., Schaefer, C.E.G.R., Ker, J.C., Almeida, C.C., Aimeida, I.C.C., 2013. Micromorphological and microchemical indicators of pedogenesis in Ornithogenic Cryosols (Gelisols) of Hope Bay, Antarctic Peninsula. Geoderma 193/194: 311-322.

Rein, G., 2013. Smouldering fires and natural fuels. In: Fire phenomena and the earth system: an interdisciplinary guide to fire science. Belcher, C.M. (Ed.). John Wiley & Sons, Oxford. pp.15-33.

Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost carbon feedback. Nature 520: 171-179.

Semenov, V.M., Ivannikova, L.A., Kuznetsova, T.V., Semenova, N.A., Tulina, A.S., 2008. Mineralization of organic matter and the carbon sequestration capacity of zonal soils. Eurasian Soil Science 41: 717-730.

Semenov, V.M., Ivannikova, L.A., Tulina, A.S., 2009. Stabilization of organic matter in the soil. Agrochemistry 10: 77-96. [in Russian].

Shishov, L.L., Tonkonogov, V.D., 2004. Classification and diagnostics of Russian soils. Soil Institute of Dokuchayev, Moscow, Russia. 341p. [in Russian].

Simas, F.N.B., Schaefer, C.E.G.R., Filho, M.R.A., Francelino, M.R., Filho, E.I.F., da Costa, L.M., 2008. Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144: 116-122.

Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., Gomes M.R.M., da Costa, L.M., 2007a. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma 138(3-4): 191-203.

Simas, F.N.B., Schaefer, C.E.G.R., Mendonca, E.S., Silva, I.R., Santana, R.M., Ribeiro, A.S.S., 2007b. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica. Journal of research of the U.S. Geological Survey 1047: 76-79.

Six, J., Frey S.D., Thrieth, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70(2): 555-569.

Swift, R.S., 2001. Sequestration of carbon by soil. Soil Science 166(11): 858-871.

Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., Convey, P., Bergstrom, D.M., 2012. Conservation biogeography of the Antarctic. Diversity and Distributions 18(7): 726-741.

Tsibart, A., Gennadiev, A., Koshovskii, T., Watts, A., 2014. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth 5: 1305-1317.

Ugolini, F.C., Bockheim, J.G., 2008. Antarctic soils and soils formation in a changing environment: A review. Geoderma 144(1-2): 1-8.

Vorobyova, L.A., 2006. Theory and practice of the chemical soil analysis. GEOS, Moscow, Russia. 400p. [in Russian].

Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth 6: 1103-1115.

WRB, 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 192p. Available at [access date: 07.10.2020]: http://www.fao.org/3/i3794en/I3794en.pdf

Yu, B., Stott, P., Di, X.Y., Yu, H.X., 2012. Assessment of land cover changes and their effect on soil organic carbon and soil total nitrogen in Daqing Prefecture, China. Land Degradation and Development 25(6): 520-531.

Zaccone, C., Rein, G., D’Orazio, V., Hadden, R.M., Belcher, C.M., Miano, T.M., 2014. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica et Cosmochimica Acta 137: 134-146.

Zhao, H., Tong, D.Q., Lin, Q., Lu, X., Wang, G., 2012. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189-190: 532-539.



Eurasian Journal of Soil Science