Eurasian Journal of Soil Science

Volume 10, Issue 2, Apr 2021, Pages 123 - 131
DOI: 10.18393/ejss.837139
Stable URL: http://ejss.fess.org/10.18393/ejss.837139
Copyright © 2021 The authors and Federation of Eurasian Soil Science Societies



Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria

X

Article first published online: 07 Dec 2020 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 64 | 794

Jelecevic,A., Sager,M., Vollprecht,D., Puschenreiter,M., Liebhard,P., 2021. Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria. Eurasian J Soil Sci 10(2):123 - 131. DOI : 10.18393/ejss.837139
Jelecevic,A.,Sager,M.Vollprecht,D.Puschenreiter,M.,& Liebhard,P. Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria Eurasian Journal of Soil Science, 10(2):123 - 131. DOI : 10.18393/ejss.837139
Jelecevic,A.,Sager,M.Vollprecht,D.Puschenreiter,M., and ,Liebhard,P."Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria" Eurasian Journal of Soil Science, 10.2 (2021):123 - 131. DOI : 10.18393/ejss.837139
Jelecevic,A.,Sager,M.Vollprecht,D.Puschenreiter,M., and ,Liebhard,P. "Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria" Eurasian Journal of Soil Science,10(Apr 2021):123 - 131 DOI : 10.18393/ejss.837139
A,Jelecevic.M,Sager.D,Vollprecht.M,Puschenreiter.P,Liebhard "Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria" Eurasian J. Soil Sci, vol.10, no.2, pp.123 - 131 (Apr 2021), DOI : 10.18393/ejss.837139
Jelecevic,Anto ;Sager,Manfred ;Vollprecht,Daniel ;Puschenreiter,Markus ;Liebhard,Peter Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria. Eurasian Journal of Soil Science, (2021),10.2:123 - 131. DOI : 10.18393/ejss.837139

How to cite

Jelecevic, A., Sager, M., Vollprecht, D., Puschenreiter, M., Liebhard, P., 2021. Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria. Eurasian J. Soil Sci. 10(2): 123 - 131. DOI : 10.18393/ejss.837139

Author information

Anto Jelecevic , University of Natural Resources and Life Sciences Vienna, Vienna, Austria
Manfred Sager , Bio Forschung Austria, Vienna, Austria
Daniel Vollprecht , Montanuniversität, Leoben, Austria
Markus Puschenreiter , University of Natural Resources and Life Sciences Vienna, Vienna, Austria
Peter Liebhard , University of Natural Resources and Life Sciences Vienna, Vienna, Austria

Publication information

Article first published online : 07 Dec 2020
Manuscript Accepted : 26 Nov 2020
Manuscript Received: 17 Jul 2020
DOI: 10.18393/ejss.837139
Stable URL: http://ejss.fesss.org/10.18393/ejss.837139

Abstract

Austrian soils from mainly historical mining and smelting sites were separated into four particle size fractions (coarse sand, fine sand, silt and clay) to distinguish the possible origins and pathways of heavy metals. Each fraction was extracted with aqua regia to determine the pseudo-total content and with CaCl2 to determine the available content of metals. The soil mineralogical composition of the < 2000 µm fraction was determined by X-ray diffraction (XRD). In general, the concentration of heavy metals and metalloids increased as soil particle size decreased. Based on the correlations of concentrations vs. the log of the mean particle size, obtained from each fraction the presence of unweathered allochthonous minerals were especially present in samples from locations at Rabenstein for most trace elements, at Arzwaldgraben for Cd, Co, Mn and Pb, at Johnsbach for Cd, Co, Mn, Pb and Zn and at Pilgersdorf for Cr. The opposite trend was found for the samples of the industrial area of Arnoldstein, Zeltweg and Hinterlobming suggesting that their metal load was derived from the discharge of effluents or from weathered phases.

Keywords

Heavy metals, minerals, soil particle size fractions, separation.

Corresponding author

References

Adriano, D. C., 1986. Trace elements in the terrestrial environment. Springer-Verlag, Berlin. 533p.

Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grčman, H., Davidson, C.M., Hursthouse, A.S., Madrid, L., Rodrigues, S., 2008. Metals in particle-size fractions of the soils of five European cities. Environmental Pollution 152(1): 73–81.

Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277(1): 1-18.

Chao, T.T., Theobald, P.K., 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology 71(8): 1560–1569.

Chopin, E.I.B., Alloway, B.J., 2007. Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air and Soil Pollution 182(1-4): 245-261.

Chung, E.H., Lee, J.S., Chon, H.T., Sager, M., 2005. Environmental contamination and bioaccessibility of arsenic and metals around the Dongjeong Au–Ag–Cu mine, Korea. Geochemistry: Exploration, Environment, Analysis 5(1): 69-74.

Ducaroir, J., Cambier, Ph., Leydecker, J.P., Prost, R., 1990. Application of soil fractionation methods to the study of the distribution of pollutant metals. Zeitschrift für Pflanzenernährung und Bodenkunde 153(5): 349-358.

Ettler, V.,Johan, Z., 2014. 12 years of leaching of contaminants from Pb smelter slags. Applied Geochemistry 40: 97-103.

Gong, C., Ma, L., Cheng, H., Liu, Y., Xu, D., Li, B., Liu, F., Ren, Y., Liu, Z., Zhao, C., Yang, K., Nie, H., Lang, C., 2014. Characterization of the particle size fractions associated heavy metals in tropical arable soils from Hainan Island, China. Journal of Geochemical Exploration 139: 109–114.

Jelecevic, A., Horn, D., Eigner, H., Sager, M., Liebhard, P., Moder, K., Vollprecht, D., 2019. Kinetics of lead release from soils at historic mining and smelting sites, determined by a modified electro-ultrafiltration. Plant, Soil and Environment 65(6): 298-306.

Jelecevic, A., Wellacher, M., Sager, M., Liebhard, P., 2018. Schwermetalle in Böden von ausgewählten Standorten in der Steiermark. Wasser und Abfall 5: 25-31 [In German].

Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer M., Sessitsch A., 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil 304: 35-44.

Lim, H.S., Lee, J.S., Chon, H.T., Sager, M., 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. Journal of Geochemical Exploration 96(2-3): 223-230.

Liu, G., Wang, J., Liu, X., Liu, X., Li, X., Ren, Y., Wang, J., Dong, L., 2018. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312: 104-113.

Mandzhieva, S., Minkina, T., Pinskiy, D., Bauer, T., Sushkova, S., 2014. The role of soil's particle-size fractions in the adsorption of heavy metals. Eurasian Journal of Soil Science 3(3): 197-205.

Mattigod, S.V., Page, A.L., Thornton, I., 1986. Identification of some trace metal minerals in a mine-waste contaminated soil. Soil Science Society of America Journal 50(1): 254-258.

Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., von Gunten, U., 2001. Characterization of iron and manganese precipitates from an in situ ground water treatment plant. Groundwater 39(6): 921-930.

Pandey, P.K., Sharma, R., Roy, M., Pandey M., 2007. Toxic mine drainage from Asia’s biggest copper mine at Malanjkhand, India. Environmental Geochemistry and Health 29: 237–248.

Sager, M., 2019. Nickel – A trace element hardly considered. International Journal of Horticulture, Agriculture and Food Science (IJHAF) 3(2): 75-90.

Sager, M., Belocky, R., 1990. Zur Geochemie, Mineralogie und Sedimentologie von Feinsedimenten aus dem Donaustauraum Altenwörth, Niederösterreich. Mitteilungen der Österreichischen Geographischen Gesellschaft 83: 267-281 [In German].

Sager, M., Mutsch, F., 2007. Sequential leaching to detect mobility changes of main and trace elements in forest soil profiles. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft 74: 87-110.

Stemmer, M., Gerzabek, M.  H., Kandeler, E., 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry 30 (1): 9-17.

Tuhý, M., Hrstka, T., Ettler, V., 2020. Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution 266: 115118.

Vollprecht, D., Berger, M., Altenburger-Junker, I., Neuhold, S.F., Sedlazeck, K.P., Aldrian, A., Dijkstra, J.J., van Zomeren, A., Raith, J.G., 2019. Mineralogy and leachability of natural rocks–A comparison to electric arc furnace slags. Minerals 9(8): 501.

Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environmental Pollution 123 (1):131-138.

Yao, Q., Wang, X., Jian, H., Chen, H., Yu, Z., 2015. Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. International Journal of Environmental Research and Public Health 12(6): 6725-6744.

Zhang, H., Luo, Y., Makino, T., Wu, L., Nanzyo, M., 2013. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust. Journal of Hazardous Materials 248–249: 303–312.

Abstract

Austrian soils from mainly historical mining and smelting sites were separated into four particle size fractions (coarse sand, fine sand, silt and clay) to distinguish the possible origins and pathways of heavy metals. Each fraction was extracted with aqua regia to determine the pseudo-total content and with CaCl2 to determine the available content of metals.  The soil mineralogical composition of the < 2000 µm fraction was determined by X-ray diffraction (XRD).  In general, the concentration of heavy metals and metalloids increased as soil particle size decreased.  Based on the correlations of concentrations vs. the log of the mean particle size, obtained from each fraction the presence of unweathered allochthonous minerals were especially present in samples from locations at Rabenstein for most trace elements, at Arzwaldgraben for Cd, Co, Mn and Pb, at Johnsbach for Cd, Co, Mn, Pb and Zn and at Pilgersdorf for Cr. The opposite trend was found for the samples of the industrial area of Arnoldstein, Zeltweg and Hinterlobming suggesting that their metal load was derived from the discharge of effluents or from weathered phases.

Keywords: Heavy metals, minerals, soil particle size fractions, separation.

References

Adriano, D. C., 1986. Trace elements in the terrestrial environment. Springer-Verlag, Berlin. 533p.

Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grčman, H., Davidson, C.M., Hursthouse, A.S., Madrid, L., Rodrigues, S., 2008. Metals in particle-size fractions of the soils of five European cities. Environmental Pollution 152(1): 73–81.

Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277(1): 1-18.

Chao, T.T., Theobald, P.K., 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology 71(8): 1560–1569.

Chopin, E.I.B., Alloway, B.J., 2007. Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air and Soil Pollution 182(1-4): 245-261.

Chung, E.H., Lee, J.S., Chon, H.T., Sager, M., 2005. Environmental contamination and bioaccessibility of arsenic and metals around the Dongjeong Au–Ag–Cu mine, Korea. Geochemistry: Exploration, Environment, Analysis 5(1): 69-74.

Ducaroir, J., Cambier, Ph., Leydecker, J.P., Prost, R., 1990. Application of soil fractionation methods to the study of the distribution of pollutant metals. Zeitschrift für Pflanzenernährung und Bodenkunde 153(5): 349-358.

Ettler, V.,Johan, Z., 2014. 12 years of leaching of contaminants from Pb smelter slags. Applied Geochemistry 40: 97-103.

Gong, C., Ma, L., Cheng, H., Liu, Y., Xu, D., Li, B., Liu, F., Ren, Y., Liu, Z., Zhao, C., Yang, K., Nie, H., Lang, C., 2014. Characterization of the particle size fractions associated heavy metals in tropical arable soils from Hainan Island, China. Journal of Geochemical Exploration 139: 109–114.

Jelecevic, A., Horn, D., Eigner, H., Sager, M., Liebhard, P., Moder, K., Vollprecht, D., 2019. Kinetics of lead release from soils at historic mining and smelting sites, determined by a modified electro-ultrafiltration. Plant, Soil and Environment 65(6): 298-306.

Jelecevic, A., Wellacher, M., Sager, M., Liebhard, P., 2018. Schwermetalle in Böden von ausgewählten Standorten in der Steiermark. Wasser und Abfall 5: 25-31 [In German].

Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer M., Sessitsch A., 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil 304: 35-44.

Lim, H.S., Lee, J.S., Chon, H.T., Sager, M., 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. Journal of Geochemical Exploration 96(2-3): 223-230.

Liu, G., Wang, J., Liu, X., Liu, X., Li, X., Ren, Y., Wang, J., Dong, L., 2018. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312: 104-113.

Mandzhieva, S., Minkina, T., Pinskiy, D., Bauer, T., Sushkova, S., 2014. The role of soil's particle-size fractions in the adsorption of heavy metals. Eurasian Journal of Soil Science 3(3): 197-205.

Mattigod, S.V., Page, A.L., Thornton, I., 1986. Identification of some trace metal minerals in a mine-waste contaminated soil. Soil Science Society of America Journal 50(1): 254-258.

Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., von Gunten, U., 2001. Characterization of iron and manganese precipitates from an in situ ground water treatment plant. Groundwater 39(6): 921-930.

Pandey, P.K., Sharma, R., Roy, M., Pandey M., 2007. Toxic mine drainage from Asia’s biggest copper mine at Malanjkhand, India. Environmental Geochemistry and Health 29: 237–248.

Sager, M., 2019. Nickel – A trace element hardly considered. International Journal of Horticulture, Agriculture and Food Science (IJHAF) 3(2): 75-90.

Sager, M., Belocky, R., 1990. Zur Geochemie, Mineralogie und Sedimentologie von Feinsedimenten aus dem Donaustauraum Altenwörth, Niederösterreich. Mitteilungen der Österreichischen Geographischen Gesellschaft 83: 267-281 [In German].

Sager, M., Mutsch, F., 2007. Sequential leaching to detect mobility changes of main and trace elements in forest soil profiles. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft 74: 87-110.

Stemmer, M., Gerzabek, M.  H., Kandeler, E., 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry 30 (1): 9-17.

Tuhý, M., Hrstka, T., Ettler, V., 2020. Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution 266: 115118.

Vollprecht, D., Berger, M., Altenburger-Junker, I., Neuhold, S.F., Sedlazeck, K.P., Aldrian, A., Dijkstra, J.J., van Zomeren, A., Raith, J.G., 2019. Mineralogy and leachability of natural rocks–A comparison to electric arc furnace slags. Minerals 9(8): 501.

Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environmental Pollution 123 (1):131-138.

Yao, Q., Wang, X., Jian, H., Chen, H., Yu, Z., 2015. Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. International Journal of Environmental Research and Public Health 12(6): 6725-6744.

Zhang, H., Luo, Y., Makino, T., Wu, L., Nanzyo, M., 2013. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust. Journal of Hazardous Materials 248–249: 303–312.



Eurasian Journal of Soil Science