Eurasian Journal of Soil Science

Volume 9, Issue 3, Jul 2020, Pages 242-253
DOI: 10.18393/ejss.734607
Stable URL: http://ejss.fess.org/10.18393/ejss.734607
Copyright © 2020 The authors and Federation of Eurasian Soil Science Societies



PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination

X

Article first published online: 09 May 2020 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 55 | 674

Sushkova,S., Minkina,T., Tarigholizadeh,S., Antonenko,E., Konstantinova,E., Gülser,C., Dudnikova,T., Barbashev,A., Kızılkaya,R., 2020. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian J Soil Sci 9(3):242-253. DOI : 10.18393/ejss.734607
Sushkova,S.,Minkina,T.Tarigholizadeh,S.Antonenko,E.Konstantinova,E.Gülser,C.Dudnikova,T.Barbashev,A.,& Kızılkaya,R. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination Eurasian Journal of Soil Science, 9(3):242-253. DOI : 10.18393/ejss.734607
Sushkova,S.,Minkina,T.Tarigholizadeh,S.Antonenko,E.Konstantinova,E.Gülser,C.Dudnikova,T.Barbashev,A., and ,Kızılkaya,R."PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination" Eurasian Journal of Soil Science, 9.3 (2020):242-253. DOI : 10.18393/ejss.734607
Sushkova,S.,Minkina,T.Tarigholizadeh,S.Antonenko,E.Konstantinova,E.Gülser,C.Dudnikova,T.Barbashev,A., and ,Kızılkaya,R. "PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination" Eurasian Journal of Soil Science,9(Jul 2020):242-253 DOI : 10.18393/ejss.734607
S,Sushkova.T,Minkina.S,Tarigholizadeh.E,Antonenko.E,Konstantinova.C,Gülser.T,Dudnikova.A,Barbashev.R,Kızılkaya "PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination" Eurasian J. Soil Sci, vol.9, no.3, pp.242-253 (Jul 2020), DOI : 10.18393/ejss.734607
Sushkova,Svetlana ;Minkina,Tatiana ;Tarigholizadeh,Sarieh ;Antonenko,Elena ;Konstantinova,Elizaveta ;Gülser,Coşkun ;Dudnikova,Tamara ;Barbashev,Andrey ;Kızılkaya,Rıdvan PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science, (2020),9.3:242-253. DOI : 10.18393/ejss.734607

How to cite

Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., Dudnikova, T., Barbashev, A., Kızılkaya, R., 2020. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian J. Soil Sci. 9(3): 242-253. DOI : 10.18393/ejss.734607

Author information

Svetlana Sushkova , Southern Federal University, Rostov-on-Don, Russia
Tatiana Minkina , Southern Federal University, Rostov-on-Don, Russia
Sarieh Tarigholizadeh , University of Tabriz, Tabriz, Iran
Elena Antonenko , Southern Federal University, Rostov-on-Don, Russia
Elizaveta Konstantinova , Southern Federal University, Rostov-on-Don, Russia
Coşkun Gülser , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Turkey
Tamara Dudnikova , Southern Federal University, Rostov-on-Don, Russia
Andrey Barbashev , Southern Federal University, Rostov-on-Don, Russia
Rıdvan Kızılkaya , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Turkey

Publication information

Article first published online : 09 May 2020
Manuscript Accepted : 07 May 2020
Manuscript Received: 19 Sep 2019
DOI: 10.18393/ejss.734607
Stable URL: http://ejss.fesss.org/10.18393/ejss.734607

Abstract

Distribution and level of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) were assessed in soils, roots and above-ground tissues of reed (Phragmites australis) on monitoring plots in the city of Kamensk-Shakhtinskyi (Southern Russia, Rostov Region). The total concentration of the 16 PAHs in soil samples ranged between 499.0 to 7177.9 µg kg-1. Samples from the plot no. 4 had the highest PAHs concentrations of 7177.9 µg kg-1. The mean concentration of ∑16PAHs in plot no. 3 was noticeably higher than those in other monitoring sites for both root (363.0 µg kg-1) and above-ground tissues (239.8 µg kg-1). The distribution of PAHs ring size was in the order of 5-6˃4˃3˃2 in soil samples and HMW PAHs fractions represent 57.3% of the total PAHs. The concentrations of 3-4 ring PAHs were higher than HMW PAHs with 5–6 aromatic rings in all P. australis tissues. Diagnostic ratios of PAHs indicated that anthropogenic activities were probably major sources of PAHs. Accordingly, the maximum accumulation was found for phenanthrene among the 16 priority PAHs in the most of the soil and plants samples. More PAHs were accumulated in roots, as reflected by its higher mean concentration of PAHs in each plot. In addition, the BCF and TF values of LMW PAHs with 2- and 3-rings were higher than those of HMW PAHs. Taken together, our results indicated that there were an intensive accumulation of PAHs in the zone of industrial sewage tanks and sludge reservoirs as well as an obvious translocations of PAHs from the polluted soils to plant tissues, therefore, more attention is required to be paid to the PAH contamination in this area.

Keywords

Plant uptake, polycyclic aromatic hydrocarbons, phragmites australis, soil contamination, translocation.

Corresponding author

References

Aina, R., Palin, L., Citterio, S., 2006. Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65(4): 666-673.

Alkio, M., Tabuchi, T.M., Wang, X., Colon-Carmona, A., 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany 56(421): 2983-2994.

Alwan, S.W., 2016. Efficiency of the Phragmites australis and Typha domingensis roots in remediation of polycyclic aromatic hydrocarbons (PAHs) from freshwater sediments. The Iraqi Journal of Agricultural Sciences 47(2): 656-666.

Alves, W.S., Manoel, E.A., Santos, N.S., Nunes, R.O., Domiciano, G.C., Soares, M.R., 2017. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy. Micron 95: 23-30.

Bech, J., Abreu, M.M., Chon, H.T., Roca, N., 2014. Remediation of potentially toxic elements in contaminated soils. In: PHEs, Environment and Human Health. Potentially harmful elements in the environment and the impact on human health. Bini, C., Bech, J. (Eds). Springer, Dordrecht. pp. 253-308.

Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety 74(4): 1057-1064.

Bonanno, G., 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and Environmental Safety 97: 124-130.

Burken, J.G., Schnoor, J.L., 1998. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science & Technology 32(21): 3379-3385.

Chang, M.L., Wang, M.J., Kuo, D.T.F., Shih, Y.H., 2013. Sorption of selected aromatic compounds by vegetables. Ecological Engineering 61: 74-81.

Chen, Z.X., Ni, H.G., Jing, X., Chang, W.J., Sun, J.L., Zeng, H., 2015. Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem. Chemosphere 131: 192-200.

Cui, Y., Zhang, W., Sun, H., Wu, W.M., Zoul, X., 2015. Polycyclic aromatic hydrocarbon accumulation in Phragmites australis grown on constructed wetland for sludge stabilization. Journal of Residuals Science & Technology 12(4): 215-220.

Čvančarová, M., Křesinová, Z., Cajthaml, T., 2013. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. Journal of Hazardous Materials 254: 116-124.

Davies, L.C., Carias, C.C., Novais, J.M., Martins-Dias, S., 2005. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecological Engineering 25(5): 594-605.

De Nicola, F., Maisto, G., Prati, M. V., Alfani, A., 2008. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environmental Pollution 153(2): 376-383.

Dettenmaier, E.M., Doucette, W.J., Bugbee, B., 2009. Chemical hydrophobicity and uptake by plant roots. Environmental Science & Technology 43(2): 324-329.

Di Gregorio, S., Gentini, A., Siracusa, G., Becarelli, S., Azaizeh, H., Lorenzi, R., 2014. Phytomediated biostimulation of the autochthonous bacterial community for the acceleration of the depletion of polycyclic aromatic hydrocarbons in contaminated sediments. BioMed Research International Article ID 891630.

Dupuy, J., Leglize, P., Vincent, Q., Zelko, I., Mustin, C., Ouvrard, S., Sterckeman, T., 2016. Effect and localization of phenanthrene in maize roots. Chemosphere 149: 130-136.

Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., Morel, J.L., 2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. Journal of Environmental Quality 31(5): 1649-1656.

Gałuszka, A., 2007. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere 67(7): 1415-1422.

Gao, Y., Zhu, L., 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55(9): 1169-1178.

Gworek, B., Klimczak, K., Kijeńska, M., 2014. The relation between polyaromatic hydrocarbon concentration in sewage sludge and its uptake by plants: Phragmites communis, Polygonum persicaria and Bidens tripartita. PloS One 9(10): e109548.

Gworek, B., Klimczak, K., Kijeńska, M., & Gozdowski, D., 2016. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge. Environmental Science and Pollution Research 23(19): 19461-19470.

Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials 169(1-3): 1-15.

ISO 10381-1, 2002. Soil quality. Sampling. Part 1. Guidance on the design of sampling programs. Available at [access date: 19.09.2019]: https://www.iso.org/standard/32423.html

ISO 10390, 2005. Soil quality – Determination of pH. Available at [access date: 19.09.2019]: https://www.iso.org/standard/40879.html

ISO 13877-2005, 2005. Soil quality - Determination of polynuclear aromatic hydrocarbons - Method Using High-performance Liquid Chromatography. Available at [access date: 19.09.2019]: https://www.iso.org/standard/23116.html

ISO 10693, 1995. Soil quality – Determination of carbonate content – Volumetric method. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/18781.html

ISO 14235, 1998. Soil quality – Determination of organic carbon by sulfochromic oxidation. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/23140.html

ISO Guide 34, 2009. General requirements for the competence of reference material producers. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/50174.html

ISO NF EN 23470, 2011. Soil quality – Determination of effective cation exchange capacity (CEC) and exchangeable cations. Available at [access date: 19.09.2019]:  https://www.iso.org/obp/ui/#iso:std:68765:en

IUSS, 2015.  World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.  192p. Available at [access date: 19.09.2019]: http://www.fao.org/3/i3794en/I3794en.pdf

Jiao, H., Wang, Q., Zhao, N., Jin, B., Zhuang, X., Bai, Z., 2017. Distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in soils around a chemical plant in Shanxi, China. International Journal of Environmental Research and Public Health 14(10): 1198.

Jiang, X., Wang, C., 2008. Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. Journal of Plant Physiology 165(7): 697-704.

Kang, F., Chen, D., Gao, Y., Zhang, Y., 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biology 10(1): 210.

Keith, L.H., Telliard, W.A., 1979. ES&T Special Report: Priority pollutants: I-a perspective view. Environmental Science & Technology 13: 416-423.

Khan, S., Aijun, L., Zhang, S., Hu, Q., Zhu, Y.G., 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials 152(2): 506-515.

Klánová, J., Čupr, P., Baráková, D., Šeda, Z., Anděl, P., & Holoubek, I., 2009. Can pine needles indicate trends in the air pollution levels at remote sites? Environmental Pollution 157(12): 3248-3254.

Krzebietke, S.J., Wierzbowska, J., Żarczyński, P.J., Sienkiewicz, S., Bosiacki, M., Markuszewski, B., Mackiewicz-Walec, E. 2018. Content of PAHs in soil of a hazel orchard depending on the method of weed control. Environmental Monitoring and Assessment 190(7): 422.

Li, F., Zeng, X., Yang, J., Zhou, K., Zan, Q., Lei, A., Tam, N.F., 2014. Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants of mangrove swamps in Shenzhen, China. Marine Pollution Bulletin 85(2): 590-596.

Li, H., Ma, Y., 2016. Field study on the uptake, accumulation, translocation and risk assessment of PAHs in a soil-wheat system with amendments of sewage sludge. Science of the Total Environment 560: 55-61.

Li, Q., Chen, B., 2014. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. Environmental Science & Technology 48(9): 4774-4781.

Lin, D., Zhu, L., He, W., Tu, Y., 2006. Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. Journal of Agricultural and Food Chemistry 54(10): 3658-3662.

Minkina, T., Fedorenko, G., Nevidomskaya, D., Fedorenko, A., Chaplygin, V., Mandzhieva, S., 2018. Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Science of the Total Environment 636: 392-401.

Minkina, T., Sushkova, S., Konstantinova, E., Kumar Yadav, B., Mandzhieva, S., Konstantinov, A., Antonenko, E., 2019. Polycyclic aromatic hydrocarbons in urban soils within the different land use: A case study of Tyumen, Russia. Polycyclic Aromatic Compounds 1-15.

Naidoo, G., Naidoo, K., 2018. Uptake and accumulation of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Environmental Science and Pollution Research 25(29): 28875-28883.

Privalenko, V.V., Mazurenko, V.T., Panaskov, V.I., Moshkin, V.M., Mukhin, N.V., Senin, B.K., 2000. Ecological problems of the city of Kamensk-Shakhtinskii. Tsvetnaya pechat’, Rostov-on-Don [in Russian].

Procedure of measurements benzo[a]pyrene content in soils, sediments and sludges by highly effective liquid chromatography method, 2008. Certificate 27-08: Moscow. 27p. [in Russian].

Ryan, J.A., Bell, R.M., Davidson, J.M., O'connor, G.A., 1988. Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17(12): 2299-2323.

Serafimovski, T., Tasev, G., Stefanova, V., 2014. Anthropoghenic soil contamination connected with active mines, smelting and plants in the Republic of Macedonia. Eurasian Journal of Soil Science 3(4): 293 - 302.

Shein, E.V., 2009. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science 42(3): 284-291.

Simonich, S.L., Hites, R.A., 1995. Organic pollutant accumulation in vegetation. Environmental Science & Technology 29(12): 2905-2914.

Sun, F., Wen, D., Kuang, Y., Li, J., Li, J., Zuo, W., 2010. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources. Journal of Environmental Sciences 22(7): 1006-1013.

Sushkova, S., Minkina, T., Mandzhieva, S., Borisenko, N., Vasilyeva, G., Kizilkaya, R., Askin, T., 2015. Approbation of express-method for benzo[a]pyrene extraction from soils in the technogenic emission zone territories. Eurasian Journal of Soil Science 4(1): 15-21.

Sushkova, S.N., Minkina, T.M., Mandzhieva, S.S., Vasilyeva, G.K., Borisenko, N.I., Turina, I.G., Kızılkaya, R., 2016. New alternative method of benzo [a] pyrene extractionfrom soils and its approbation in soil under technogenic pressure. Journal of Soils and Sediments 16(4): 1323-1329.

Sushkova, S.N., Minkina, T.M., Mandzhieva, S.S., Deryabkina, I.G., Vasil’eva, G.K., Kızılkaya, R., 2017. Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian Soil Science 50(1): 95-105.

Suzuki, N., Koussevitzky, S.H.A.I., Mittler, R.O.N., Miller, G.A.D., 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment 35(2): 259-270.

Toyama, T., Furukawa, T., Maeda, N., Inoue, D., Sei, K., Mori, K., Ike, M., 2011. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Research 45(4): 1629-1638.

Waqas, M., Khan, S., Chao, C., Shamshad, I., Qamar, Z., Khan, K., 2014. Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Science of the Total Environment 497: 448-458.

Wang, Y., Wang, S., Luo, C., Xu, Y., Pan, S., Li, J., Ming, L., Zhang, G., Li, X., 2015. Influence of rice growth on the fate of polycyclic aromatic hydrocarbons in a subtropical paddy field: a life cycle study. Chemosphere 119: 1233-1239.

Wang, Z., Liu, Z., Yang, Y., Li, T., Liu, M., 2012. Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 89(3): 221-227.

Wild, E., Dent, J., Thomas, G.O., Jones, K.C., 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology 39(10): 3695-3702.

Yaroshchuk, A.V., Maksimenko, E.V., Borisenko, N.I., 2003. Development of a technique for extracting benzo[a]pyrene from soils. Izvestiya vuzov. Severo - Kavkazskii region. Natural Sciences. Prilozhenie 9: 44-46. [in Russian]

Zhan, X.H., Ma, H.L., Zhou, L.X., Liang, J.R., Jiang, T.H., Xu, G.H., 2010. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake? BMC Plant Biology 10(1): 52.

Zhan, X., Zhu, M., Shen, Y., Yue, L., Li, J., Gardea-Torresdey, J. L., Xu, G., 2018. Apoplastic and symplastic uptake of phenanthrene in wheat roots. Environmental Pollution 233: 331-339.

Zhang, C., Yao, F.E.N.G., Liu, Y.W., Chang, H.Q., LI, Z.J., Xue, J.M., 2017a. Uptake and translocation of organic pollutants in plants: A review. Journal of Integrative Agriculture 16(8): 1659-1668.

Zhang, S., Yao, H., Lu, Y., Yu, X., Wang, J., Sun, S., Liu, M., Li, D., Li, Y.F., Zhang, D., 2017b. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports 7(1): Article number: 12165.

Zhang, Z., Rengel, Z., Meney, K., 2010. Polynuclear aromatic hydrocarbons (PAHs) differentially influence growth of various emergent wetland species. Journal of Hazardous Materials 182(1-3): 689-695.

Zohair, A., Salim, A.B., Soyibo, A.A., Beck, A.J., 2006. Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63(4): 541-553.

Zuo, Q., Lin, H., Zhang, X.L., Li, Q.L., Liu, S.Z., Tao, S., 2006. A two-compartment exposure device for foliar uptake study. Environmental Pollution 143(1): 126-128.

Abstract

Distribution and level of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) were assessed in soils, roots and above-ground tissues of reed (Phragmites australis) on monitoring plots in the city of Kamensk-Shakhtinskyi (Southern Russia, Rostov Region). The total concentration of the 16 PAHs in soil samples ranged between 499.0 to 7177.9 µg kg-1. Samples from the plot no. 4 had the highest PAHs concentrations of 7177.9 µg kg-1. The mean concentration of ∑16PAHs in plot no. 3 was noticeably higher than those in other monitoring sites for both root (363.0 µg kg-1) and above-ground tissues (239.8 µg kg-1). The distribution of PAHs ring size was in the order of 5-6˃4˃3˃2 in soil samples and HMW PAHs fractions represent 57.3% of the total PAHs. The concentrations of 3-4 ring PAHs were higher than HMW PAHs with 5–6 aromatic rings in all P. australis tissues. Diagnostic ratios of PAHs indicated that anthropogenic activities were probably major sources of PAHs. Accordingly, the maximum accumulation was found for phenanthrene among the 16 priority PAHs in the most of the soil and plants samples. More PAHs were accumulated in roots, as reflected by its higher mean concentration of PAHs in each plot. In addition, the BCF and TF values of LMW PAHs with 2- and 3-rings were higher than those of HMW PAHs. Taken together, our results indicated that there were an intensive accumulation of PAHs in the zone of industrial sewage tanks and sludge reservoirs as well as an obvious translocations of PAHs from the polluted soils to plant tissues, therefore, more attention is required to be paid to the PAH contamination in this area.

Keywords: Plant uptake, polycyclic aromatic hydrocarbons, phragmites australis, soil contamination, translocation.

References

Aina, R., Palin, L., Citterio, S., 2006. Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65(4): 666-673.

Alkio, M., Tabuchi, T.M., Wang, X., Colon-Carmona, A., 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany 56(421): 2983-2994.

Alwan, S.W., 2016. Efficiency of the Phragmites australis and Typha domingensis roots in remediation of polycyclic aromatic hydrocarbons (PAHs) from freshwater sediments. The Iraqi Journal of Agricultural Sciences 47(2): 656-666.

Alves, W.S., Manoel, E.A., Santos, N.S., Nunes, R.O., Domiciano, G.C., Soares, M.R., 2017. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy. Micron 95: 23-30.

Bech, J., Abreu, M.M., Chon, H.T., Roca, N., 2014. Remediation of potentially toxic elements in contaminated soils. In: PHEs, Environment and Human Health. Potentially harmful elements in the environment and the impact on human health. Bini, C., Bech, J. (Eds). Springer, Dordrecht. pp. 253-308.

Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety 74(4): 1057-1064.

Bonanno, G., 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and Environmental Safety 97: 124-130.

Burken, J.G., Schnoor, J.L., 1998. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science & Technology 32(21): 3379-3385.

Chang, M.L., Wang, M.J., Kuo, D.T.F., Shih, Y.H., 2013. Sorption of selected aromatic compounds by vegetables. Ecological Engineering 61: 74-81.

Chen, Z.X., Ni, H.G., Jing, X., Chang, W.J., Sun, J.L., Zeng, H., 2015. Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem. Chemosphere 131: 192-200.

Cui, Y., Zhang, W., Sun, H., Wu, W.M., Zoul, X., 2015. Polycyclic aromatic hydrocarbon accumulation in Phragmites australis grown on constructed wetland for sludge stabilization. Journal of Residuals Science & Technology 12(4): 215-220.

Čvančarová, M., Křesinová, Z., Cajthaml, T., 2013. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. Journal of Hazardous Materials 254: 116-124.

Davies, L.C., Carias, C.C., Novais, J.M., Martins-Dias, S., 2005. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecological Engineering 25(5): 594-605.

De Nicola, F., Maisto, G., Prati, M. V., Alfani, A., 2008. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environmental Pollution 153(2): 376-383.

Dettenmaier, E.M., Doucette, W.J., Bugbee, B., 2009. Chemical hydrophobicity and uptake by plant roots. Environmental Science & Technology 43(2): 324-329.

Di Gregorio, S., Gentini, A., Siracusa, G., Becarelli, S., Azaizeh, H., Lorenzi, R., 2014. Phytomediated biostimulation of the autochthonous bacterial community for the acceleration of the depletion of polycyclic aromatic hydrocarbons in contaminated sediments. BioMed Research International Article ID 891630.

Dupuy, J., Leglize, P., Vincent, Q., Zelko, I., Mustin, C., Ouvrard, S., Sterckeman, T., 2016. Effect and localization of phenanthrene in maize roots. Chemosphere 149: 130-136.

Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., Morel, J.L., 2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. Journal of Environmental Quality 31(5): 1649-1656.

Gałuszka, A., 2007. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere 67(7): 1415-1422.

Gao, Y., Zhu, L., 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55(9): 1169-1178.

Gworek, B., Klimczak, K., Kijeńska, M., 2014. The relation between polyaromatic hydrocarbon concentration in sewage sludge and its uptake by plants: Phragmites communis, Polygonum persicaria and Bidens tripartita. PloS One 9(10): e109548.

Gworek, B., Klimczak, K., Kijeńska, M., & Gozdowski, D., 2016. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge. Environmental Science and Pollution Research 23(19): 19461-19470.

Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials 169(1-3): 1-15.

ISO 10381-1, 2002. Soil quality. Sampling. Part 1. Guidance on the design of sampling programs. Available at [access date: 19.09.2019]: https://www.iso.org/standard/32423.html

ISO 10390, 2005. Soil quality – Determination of pH. Available at [access date: 19.09.2019]: https://www.iso.org/standard/40879.html

ISO 13877-2005, 2005. Soil quality - Determination of polynuclear aromatic hydrocarbons - Method Using High-performance Liquid Chromatography. Available at [access date: 19.09.2019]: https://www.iso.org/standard/23116.html

ISO 10693, 1995. Soil quality – Determination of carbonate content – Volumetric method. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/18781.html

ISO 14235, 1998. Soil quality – Determination of organic carbon by sulfochromic oxidation. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/23140.html

ISO Guide 34, 2009. General requirements for the competence of reference material producers. Available at [access date: 19.09.2019]:  https://www.iso.org/standard/50174.html

ISO NF EN 23470, 2011. Soil quality – Determination of effective cation exchange capacity (CEC) and exchangeable cations. Available at [access date: 19.09.2019]:  https://www.iso.org/obp/ui/#iso:std:68765:en

IUSS, 2015.  World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.  192p. Available at [access date: 19.09.2019]: http://www.fao.org/3/i3794en/I3794en.pdf

Jiao, H., Wang, Q., Zhao, N., Jin, B., Zhuang, X., Bai, Z., 2017. Distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in soils around a chemical plant in Shanxi, China. International Journal of Environmental Research and Public Health 14(10): 1198.

Jiang, X., Wang, C., 2008. Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. Journal of Plant Physiology 165(7): 697-704.

Kang, F., Chen, D., Gao, Y., Zhang, Y., 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biology 10(1): 210.

Keith, L.H., Telliard, W.A., 1979. ES&T Special Report: Priority pollutants: I-a perspective view. Environmental Science & Technology 13: 416-423.

Khan, S., Aijun, L., Zhang, S., Hu, Q., Zhu, Y.G., 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials 152(2): 506-515.

Klánová, J., Čupr, P., Baráková, D., Šeda, Z., Anděl, P., & Holoubek, I., 2009. Can pine needles indicate trends in the air pollution levels at remote sites? Environmental Pollution 157(12): 3248-3254.

Krzebietke, S.J., Wierzbowska, J., Żarczyński, P.J., Sienkiewicz, S., Bosiacki, M., Markuszewski, B., Mackiewicz-Walec, E. 2018. Content of PAHs in soil of a hazel orchard depending on the method of weed control. Environmental Monitoring and Assessment 190(7): 422.

Li, F., Zeng, X., Yang, J., Zhou, K., Zan, Q., Lei, A., Tam, N.F., 2014. Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants of mangrove swamps in Shenzhen, China. Marine Pollution Bulletin 85(2): 590-596.

Li, H., Ma, Y., 2016. Field study on the uptake, accumulation, translocation and risk assessment of PAHs in a soil-wheat system with amendments of sewage sludge. Science of the Total Environment 560: 55-61.

Li, Q., Chen, B., 2014. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. Environmental Science & Technology 48(9): 4774-4781.

Lin, D., Zhu, L., He, W., Tu, Y., 2006. Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. Journal of Agricultural and Food Chemistry 54(10): 3658-3662.

Minkina, T., Fedorenko, G., Nevidomskaya, D., Fedorenko, A., Chaplygin, V., Mandzhieva, S., 2018. Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Science of the Total Environment 636: 392-401.

Minkina, T., Sushkova, S., Konstantinova, E., Kumar Yadav, B., Mandzhieva, S., Konstantinov, A., Antonenko, E., 2019. Polycyclic aromatic hydrocarbons in urban soils within the different land use: A case study of Tyumen, Russia. Polycyclic Aromatic Compounds 1-15.

Naidoo, G., Naidoo, K., 2018. Uptake and accumulation of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Environmental Science and Pollution Research 25(29): 28875-28883.

Privalenko, V.V., Mazurenko, V.T., Panaskov, V.I., Moshkin, V.M., Mukhin, N.V., Senin, B.K., 2000. Ecological problems of the city of Kamensk-Shakhtinskii. Tsvetnaya pechat’, Rostov-on-Don [in Russian].

Procedure of measurements benzo[a]pyrene content in soils, sediments and sludges by highly effective liquid chromatography method, 2008. Certificate 27-08: Moscow. 27p. [in Russian].

Ryan, J.A., Bell, R.M., Davidson, J.M., O'connor, G.A., 1988. Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17(12): 2299-2323.

Serafimovski, T., Tasev, G., Stefanova, V., 2014. Anthropoghenic soil contamination connected with active mines, smelting and plants in the Republic of Macedonia. Eurasian Journal of Soil Science 3(4): 293 - 302.

Shein, E.V., 2009. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science 42(3): 284-291.

Simonich, S.L., Hites, R.A., 1995. Organic pollutant accumulation in vegetation. Environmental Science & Technology 29(12): 2905-2914.

Sun, F., Wen, D., Kuang, Y., Li, J., Li, J., Zuo, W., 2010. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources. Journal of Environmental Sciences 22(7): 1006-1013.

Sushkova, S., Minkina, T., Mandzhieva, S., Borisenko, N., Vasilyeva, G., Kizilkaya, R., Askin, T., 2015. Approbation of express-method for benzo[a]pyrene extraction from soils in the technogenic emission zone territories. Eurasian Journal of Soil Science 4(1): 15-21.

Sushkova, S.N., Minkina, T.M., Mandzhieva, S.S., Vasilyeva, G.K., Borisenko, N.I., Turina, I.G., Kızılkaya, R., 2016. New alternative method of benzo [a] pyrene extractionfrom soils and its approbation in soil under technogenic pressure. Journal of Soils and Sediments 16(4): 1323-1329.

Sushkova, S.N., Minkina, T.M., Mandzhieva, S.S., Deryabkina, I.G., Vasil’eva, G.K., Kızılkaya, R., 2017. Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian Soil Science 50(1): 95-105.

Suzuki, N., Koussevitzky, S.H.A.I., Mittler, R.O.N., Miller, G.A.D., 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment 35(2): 259-270.

Toyama, T., Furukawa, T., Maeda, N., Inoue, D., Sei, K., Mori, K., Ike, M., 2011. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Research 45(4): 1629-1638.

Waqas, M., Khan, S., Chao, C., Shamshad, I., Qamar, Z., Khan, K., 2014. Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Science of the Total Environment 497: 448-458.

Wang, Y., Wang, S., Luo, C., Xu, Y., Pan, S., Li, J., Ming, L., Zhang, G., Li, X., 2015. Influence of rice growth on the fate of polycyclic aromatic hydrocarbons in a subtropical paddy field: a life cycle study. Chemosphere 119: 1233-1239.

Wang, Z., Liu, Z., Yang, Y., Li, T., Liu, M., 2012. Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 89(3): 221-227.

Wild, E., Dent, J., Thomas, G.O., Jones, K.C., 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology 39(10): 3695-3702.

Yaroshchuk, A.V., Maksimenko, E.V., Borisenko, N.I., 2003. Development of a technique for extracting benzo[a]pyrene from soils. Izvestiya vuzov. Severo - Kavkazskii region. Natural Sciences. Prilozhenie 9: 44-46. [in Russian]

Zhan, X.H., Ma, H.L., Zhou, L.X., Liang, J.R., Jiang, T.H., Xu, G.H., 2010. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake? BMC Plant Biology 10(1): 52.

Zhan, X., Zhu, M., Shen, Y., Yue, L., Li, J., Gardea-Torresdey, J. L., Xu, G., 2018. Apoplastic and symplastic uptake of phenanthrene in wheat roots. Environmental Pollution 233: 331-339.

Zhang, C., Yao, F.E.N.G., Liu, Y.W., Chang, H.Q., LI, Z.J., Xue, J.M., 2017a. Uptake and translocation of organic pollutants in plants: A review. Journal of Integrative Agriculture 16(8): 1659-1668.

Zhang, S., Yao, H., Lu, Y., Yu, X., Wang, J., Sun, S., Liu, M., Li, D., Li, Y.F., Zhang, D., 2017b. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports 7(1): Article number: 12165.

Zhang, Z., Rengel, Z., Meney, K., 2010. Polynuclear aromatic hydrocarbons (PAHs) differentially influence growth of various emergent wetland species. Journal of Hazardous Materials 182(1-3): 689-695.

Zohair, A., Salim, A.B., Soyibo, A.A., Beck, A.J., 2006. Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63(4): 541-553.

Zuo, Q., Lin, H., Zhang, X.L., Li, Q.L., Liu, S.Z., Tao, S., 2006. A two-compartment exposure device for foliar uptake study. Environmental Pollution 143(1): 126-128.



Eurasian Journal of Soil Science