Eurasian Journal of Soil Science

Volume 3, Issue 1, Jun 2014, Pages 77 - 81
DOI: 10.18393/ejss.69966
Stable URL: http://ejss.fess.org/10.18393/ejss.69966
Copyright © 2014 The authors and Federation of Eurasian Soil Science Societies



Using soil moisture constants and physical properties to predict saturated hydraulic conductivity

X

Article first published online: 27 Jun 2014 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 2188 | 5063

Gülser,C., Candemir,F., 2014. Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian J Soil Sci 3(1):77 - 81. DOI : 10.18393/ejss.69966
Gülser,C.,,& Candemir,F. Using soil moisture constants and physical properties to predict saturated hydraulic conductivity Eurasian Journal of Soil Science, DOI : 10.18393/ejss.69966
Gülser,C.,, and ,Candemir,F."Using soil moisture constants and physical properties to predict saturated hydraulic conductivity" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.69966
Gülser,C.,, and ,Candemir,F. "Using soil moisture constants and physical properties to predict saturated hydraulic conductivity" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.69966
C,Gülser.F,Candemir "Using soil moisture constants and physical properties to predict saturated hydraulic conductivity" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.69966
Gülser,Coşkun ;Candemir,Feride Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.69966

How to cite

Gülser, C., Candemir, F., 2014. Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian J. Soil Sci. 3(1): 77 - 81. DOI : 10.18393/ejss.69966

Author information

Coşkun Gülser , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Turkey
Feride Candemir , Ondokuz Mayıs University, Faculty of Agriculture, Soil Science and Plant Nutrition Department, Samsun, Turkey

Publication information

Issue published online: 30 Jun 2014
Article first published online : 27 Jun 2014
Manuscript Accepted : 26 Jun 2014
Manuscript Received: 09 Jan 2014
DOI: 10.18393/ejss.69966
Stable URL: http://ejss.fesss.org/10.18393/ejss.69966

Abstract

Saturated hydraulic conductivity (Ks) is an important variable in hydrological cycle processes. Determination of Ks in soils is a difficult and time consuming process. The objective of this study was to determine Ks in soils by pedotransfer (PTF) models derived using soil moisture constants and physical properties. Ks values were determined in 30 different soil samples using constant head permeability method. According to path analyses results, direct effects of some soil properties on Ks in soils were in the following order; permanent wilting point (PWP) > bulk density (BD) > clay (C) > silt (Si) > field capacity (FC). Soil physical properties generally had the highest indirect effects on Ks through PWP. Prediction of Ks by the second order PTF models was significant using only C, Si and DB (r=0.868**) and using only FC and PWP (r=0.796**) in the models. Using moisture constants with the other soil physical properties in the second order PTF model increased significance level of the relation between predicted and measured values of Ks (r=0.955**). Besides soil physical properties, having moisture constants in PTF models showed that saturated Ks values can be predicted more accurately in soils having similar physical boundary conditions such as texture, bulk density etc.

Keywords

Saturated hydraulic conductivity, pedotransfer model, field capacity, wilting point

Corresponding author

References

Ahuja, I.R., Namey, J.W., Green, R.E., Nielsen, D.R., 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society America Journal 48: 699–702.

Amoozegar, A., Warrick, A.W., 1986. Hydraulic conductivity of saturated soils: Field Methods. In: Methods of Soil Analysis. Part 1.Physical and Mineralogical Methods (Ed. A. Klute). SSSA Book Series: 5 (formerly Agronomy Monograph 9). Madison, Wisconsin, USA, pp. 735-768.

Anderson, J.L., Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Science Society America Proceedings 37: 408– 413.

Basile, A., D’urso, G., 1997. Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil Technology 10:261-272.

Brady, N.C., 1974. The nature and properties of soils. 8th edition. MacMillan Pub.Co., Inc. New York.

De Macedo, J.R., Meneguelli, N.A., Filho, T.B.O., Lima, J.A.S., 2002, Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janerio. Communication Soil Science and Plant Analyses 33 (13-14): 2037-2055.

Demiralay, İ., 1993. Toprak fiziksel analiz yöntemleri. Atatürk Univ. Ziraat Fakültesi yayınları. Erzurum, p. 111-120.

Goncalves, M.C., Pereira, L.S., Leij, F.J., 1997. Pedo-transfer Functions for Estimating Unsaturated Hydraulic Properties of Portuguese Soils. European Journal of Soil Science 48: 387–400.

Gülser, C., 2004. Tarla Kapasitesi ve Devamlı Solma Noktası Değerlerinin Toprakların Fiziksel ve Kimyasal Özellikleriyle İlişkili Pedotransfer Eşitliklerle Belirlenmesi. OMU Ziraat Fak. Dergisi, 19(3): 19-23.

Gülser, C., Candemir, F., İç, S., Demir, Z., 2007. Pedotransfer Modellerle İnce Bünyeli Topraklarda Doygun Hidrolik İletkenliğin Tahmini. V. Ulusal Hidroloji Kongresi, Bildiriler Kitabı, 5-7 Eylül, ODTÜ Ankara, p. 563-569.

Hillel, D., 1982. Introduction to soil physics. Academic Press, Inc. San Dieoga, California.

Kacar, B., 1994. Bitki ve toprağın kimyasal analizleri III. Soil Analysis,.Ankara Univ. Ziraat Fakültesi yayınları No:3 Ankara, Turkey.

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: SSA-SSSA. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy monograph no. 9. pp. 687-734.

Mualem, Y., Degan, G., 1978. Hydraulic conductivity of soils: unified approach to the statistical models. Soil Science Society America Journal 42: 392– 395.

Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society America Journal 67: 1093–1102.

Ozdemir, N., 1998. Toprak Fizigi. OMÜ Ziraat Fak. Ders Kitabı, No:30, Samsun.

Pachepsky, Y.A., Tilin, D., Varallyay, G., 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society America Journal 60: 727-733.

Pachepsky, Y.A., Rawls, W.J., Lin, H.S., 2006. Hydropedology and pedotransfer functions. Geoderma, 131, pp. 308-316.

Salchow, E., Lal, R., Fausey, N.R., Ward, A., 1996. Pedotransfer functions for variable alluvial soils in southern Ohio. Geoderma 73, pp. 165-181.

Slatyer, R.O., 1967. Plant-water relationships. Academic Press, New York, p. 73-77.

Soil Survey Staff , 1993. Soil Survey Manuel. USDA Handbook No:18 Washington.

Tüzüner, A., 1990. Bozulmuş örneklerde sıkıştırma yöntemiyle hacim ağırlığı tayini. Tüzüner, A. (Ed.) Toprak ve su analiz laboratuarları el kitabı. TC Tarım Orman ve Köy İşleri Bakanlığı Köy Hizm. Genel Müd. Ankara, p. 100.

US Salinity Lab. Staff,, 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook, no. 64, USDA.

Wright, S., 1968. Path analysis: Theory, evolution and the genetics of populations, Volume:1 p. 299-324, The University of Chicago Press.

Abstract

Saturated hydraulic conductivity (Ks) is an important variable in hydrological cycle processes. Determination of Ks in soils is a difficult and time consuming process. The objective of this study was to determine Ks in soils by pedotransfer (PTF) models derived using soil moisture constants and physical properties. Ks values were determined in 30 different soil samples using constant head permeability method. According to path analyses results, direct effects of some soil properties on Ks in soils were in the following order; permanent wilting point (PWP) > bulk density (BD) > clay (C) > silt (Si) > field capacity (FC). Soil physical properties generally had the highest indirect effects on Ks through PWP. Prediction of Ks by the second order PTF models was significant using only C, Si and DB (r=0.868**) and using only FC and PWP (r=0.796**) in the models. Using moisture constants with the other soil physical properties in the second order PTF model increased significance level of the relation between predicted and measured values of Ks (r=0.955**). Besides soil physical properties, having moisture constants in PTF models showed that saturated Ks values can be predicted more accurately in soils having similar physical boundary conditions such as texture, bulk density etc.

Keywords: Saturated hydraulic conductivity, pedotransfer model, field capacity, wilting point.

References

Ahuja, I.R., Namey, J.W., Green, R.E., Nielsen, D.R., 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society America Journal 48: 699–702.

Amoozegar, A., Warrick, A.W., 1986. Hydraulic conductivity of saturated soils: Field Methods. In: Methods of Soil Analysis. Part 1.Physical and Mineralogical Methods (Ed. A. Klute). SSSA Book Series: 5 (formerly Agronomy Monograph 9). Madison, Wisconsin, USA, pp. 735-768.

Anderson, J.L., Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Science Society America Proceedings 37: 408– 413.

Basile, A., D’urso, G., 1997. Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil Technology 10:261-272.

Brady, N.C., 1974. The nature and properties of soils. 8th edition. MacMillan Pub.Co., Inc. New York.

De Macedo, J.R., Meneguelli, N.A., Filho, T.B.O., Lima, J.A.S., 2002, Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janerio. Communication Soil Science and Plant Analyses 33 (13-14): 2037-2055.

Demiralay, İ., 1993. Toprak fiziksel analiz yöntemleri. Atatürk Univ. Ziraat Fakültesi yayınları. Erzurum, p. 111-120.

Goncalves, M.C., Pereira, L.S., Leij, F.J., 1997. Pedo-transfer Functions for Estimating Unsaturated Hydraulic Properties of Portuguese Soils. European Journal of Soil Science 48: 387–400.

Gülser, C., 2004. Tarla Kapasitesi ve Devamlı Solma Noktası Değerlerinin Toprakların Fiziksel ve Kimyasal Özellikleriyle İlişkili Pedotransfer Eşitliklerle Belirlenmesi. OMU Ziraat Fak. Dergisi, 19(3): 19-23.

Gülser, C., Candemir, F., İç, S., Demir, Z., 2007. Pedotransfer Modellerle İnce Bünyeli Topraklarda Doygun Hidrolik İletkenliğin Tahmini. V. Ulusal Hidroloji Kongresi, Bildiriler Kitabı, 5-7 Eylül, ODTÜ Ankara, p. 563-569.

Hillel, D., 1982. Introduction to soil physics. Academic Press, Inc. San Dieoga, California.

Kacar, B., 1994. Bitki ve toprağın kimyasal analizleri III. Soil Analysis,.Ankara Univ. Ziraat Fakültesi yayınları No:3 Ankara, Turkey.

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: SSA-SSSA. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy monograph no. 9. pp. 687-734.

Mualem, Y., Degan, G., 1978. Hydraulic conductivity of soils: unified approach to the statistical models. Soil Science Society America Journal 42: 392– 395.

Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society America Journal 67: 1093–1102.

Ozdemir, N., 1998. Toprak Fizigi. OMÜ Ziraat Fak. Ders Kitabı, No:30, Samsun.

Pachepsky, Y.A., Tilin, D., Varallyay, G., 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society America Journal 60: 727-733.

Pachepsky, Y.A., Rawls, W.J., Lin, H.S., 2006. Hydropedology and pedotransfer functions. Geoderma, 131, pp. 308-316.

Salchow, E., Lal, R., Fausey, N.R., Ward, A., 1996. Pedotransfer functions for variable alluvial soils in southern Ohio. Geoderma 73, pp. 165-181.

Slatyer, R.O., 1967. Plant-water relationships. Academic Press, New York, p. 73-77.

Soil Survey Staff , 1993. Soil Survey Manuel. USDA Handbook No:18 Washington.

Tüzüner, A., 1990. Bozulmuş örneklerde sıkıştırma yöntemiyle hacim ağırlığı tayini. Tüzüner, A. (Ed.) Toprak ve su analiz laboratuarları el kitabı. TC Tarım Orman ve Köy İşleri Bakanlığı Köy Hizm. Genel Müd. Ankara, p. 100.

US Salinity Lab. Staff,, 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook, no. 64, USDA.

Wright, S., 1968. Path analysis: Theory, evolution and the genetics of populations, Volume:1 p. 299-324, The University of Chicago Press.



Eurasian Journal of Soil Science