Eurasian Journal of Soil Science

Volume 9, Issue 1, Jan 2020, Pages 75 - 84
DOI: 10.18393/ejss.647585
Stable URL: http://ejss.fess.org/10.18393/ejss.647585
Copyright © 2020 The authors and Federation of Eurasian Soil Science Societies



Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency

X

Article first published online: 18 Nov 2019 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 84 | 524

Akram,M., Depar,N., Irfan,M., 2020. Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency. Eurasian J Soil Sci 9(1):75 - 84. DOI : 10.18393/ejss.647585
Akram,M.,Depar,N.,& Irfan,M. Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency Eurasian Journal of Soil Science, 9(1):75 - 84. DOI : 10.18393/ejss.647585
Akram,M.,Depar,N., and ,Irfan,M."Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency" Eurasian Journal of Soil Science, 9.1 (2020):75 - 84. DOI : 10.18393/ejss.647585
Akram,M.,Depar,N., and ,Irfan,M. "Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency" Eurasian Journal of Soil Science,9(Jan 2020):75 - 84 DOI : 10.18393/ejss.647585
M,Akram.N,Depar.M,Irfan "Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency" Eurasian J. Soil Sci, vol.9, no.1, pp.75 - 84 (Jan 2020), DOI : 10.18393/ejss.647585
Akram,Muhammad Ahmed ;Depar,Nizamuddin ;Irfan,Muhammad Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency. Eurasian Journal of Soil Science, (2020),9.1:75 - 84. DOI : 10.18393/ejss.647585

How to cite

Akram, M., Depar, N., Irfan, M., 2020. Agronomic zinc biofortification of wheat to improve accumulation, bioavailability, productivity and use efficiency. Eurasian J. Soil Sci. 9(1): 75 - 84. DOI : 10.18393/ejss.647585

Author information

Muhammad Ahmed Akram , Soil & Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Sindh, Pakistan
Nizamuddin Depar , Soil & Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Sindh, Pakistan
Muhammad Irfan , Soil & Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Sindh, Pakistan

Publication information

Article first published online : 18 Nov 2019
Manuscript Accepted : 11 Nov 2019
Manuscript Received: 18 Jul 2019
DOI: 10.18393/ejss.647585
Stable URL: http://ejss.fesss.org/10.18393/ejss.647585

Abstract

Zinc (Zn) deficiency causes low crop production and malnutrition in human. Agronomic biofortification of food crops can resolve the issues of global food security and human nutrition on sustainable basis. Field experiments were conducted to improve Zn bioavailability, growth and yield of wheat in response to varying Zn application rates for two consecutive years (2016-17 & 2017-18). Significant increase in grain yield was recorded with the application of Zn. Highest grain yield (5.41 t ha-1) was recorded with the application of 5.00 kg Zn ha-1. Human available Zn fraction was also improved in response to Zn application. Zn application resulted in lowering phytate/Zn molar ration in wheat grains. Higher Zn accumulation (338.72 g ha-1) was observed by applying 7.5 kg Zn ha-1. Zinc application was found critical to meet internal (36.53 µg g-1) and external (4.48 kg Zn ha-1) Zn requirements to achieve near maximum yield of wheat. The results reinforced the concept of Zn fertilization to achieve better productivity and quality.

Keywords

Biofortification, cereals, food security, nutrition.

Corresponding author

References

Akram, M.A., Depar, N., Memon, M.Y., 2017. Synergistic use of nitrogen and zinc to bio-fortify zinc in wheat grains. Eurasian Journal of Soil Science 6(4): 319-326.

Anderson, J.M., Ingram, J.S.I., 1993. Tropical Soil Biology and Fertility. CAB International, Wallingford, UK. 221p.

Andreini, C., Banci, L., Bertini, I., Rosato, A., 2006. Zinc through the three domains of life. Journal of Proteome Research 5(11): 3173–3178.

Barunawati, N., Giehl, R.F.H., Bauer, B., von Wiren, N., 2013. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Frontiers in Plant Science 4 :320. 

Bouis, H.E., Saltzman, A., 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security 12: 49-58.

Bouis, H.E., Welch, R.M., 2010. Biofortification–A sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Science 50(1): S20–S32.

Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54(5): 464‒465.

Cakmak, I., 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil 302: 1–17.

Cakmak, I., Kalayci, M., Kaya, Y., Torun, A. A., Aydin, N., Wang, Y., Arise, Z., Erdem, H.,  Gokmen, O., Ozturk, L., Horst, W.J.,  2010. Biofortification and localization of Zn in wheat grain. Journal of Agricultural and Food Chemistry 58(16): 9092–9102.

Cakmak, I., Kutman, U.B., 2018. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science 69(1): 172-180.

Chen, Y., Cui, J., Tian, X., Zhao, A., Li, M., Wang, S., Li, X., Jia, Z., Liu, K., 2017. Effect of straw amendment on soil Zn availability and ageing of exogenous water-soluble Zn applied to calcareous soil. PLoS One 12(1): e0169776.

Erdal, I., Yilmaz, A., Taban, S., Eker, S., Torun, B., Cakmak, I., 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition 25(1): 113–127.

Fageria, N.K., dos Santos, A.B., Cobucci, T., 2011. Zinc nutrition of lowland rice. Communications in Soil Science Plant Analysis 42(14): 1719-1727.

Farooq, M., Ullah, A., Rehman, A., Nawaz, A., Nadeem, A., Wakeel, A., Nadeem, F., Siddique, H.M.K., 2018. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crop Research 216: 53-62.

Genc, Y., McDonald, G.K., Graham, R.D., 2002. Critical deficiency concentration of zinc in barley genotypes differing in zinc efficiency and its relations to growth responses. Journal of Plant Nutrition 25(3): 545-560.

Gibson, R.S., 2012. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil 361(1-2): 291–299.

Gupta, N., Ram, H., Kumar, B., 2016. Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology 15(1): 89-109.

Hambidge, K.M., Miller, L.V., Westcott, J.E., Sheng, X., Krebs, N.F., 2010. Zinc bioavailability and homeostasis. American Journal of Clinical Nutrition 91(5): 1478S–1483S.

Harland, B.F., Morris, E.R., 1995. Phytate: A good or a bad food component?. Nutrition Research 15(5): 733-754.

Haug, W., Lantzsch, H., 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture 34(12): 1423-1426.

Hussain, S., Maqsood, M.A., Rengel, Z., Aziz, T., Abid, M., 2013. Estimated zinc bioavailability in milling fractions of biofortified wheat grains and in flours of different extraction rates. International Journal of Agriculture and Biology 15(5): 383–388.

Imran, M., Kanwal, S., Hussain, S., Aziz, T., Maqsood, M.A., 2015. Efficacy of zinc application methods for concentration and estimated bioavailability of Zn in grains of rice grown on a calcareous soil. Pakistan Journal of Agricultural Sciences 52(1): 169-175

Jackson, M.L., 1962. Soil chemical Analysis. Prentice Hall Inc, Englewood Cliffs, NJ, USA. pp.151-153

Juliano, B.O., 1993. RICE in human nutrition. Food and Agriculture Organization of the United Nations, Rome. Italy. Available at [access date: 18.07.2019]: http://www.fao.org/3/t0567e/T0567E00.htm

Kanwal, S., Rahmatullah, Maqsood, M.A., Bakhat, H.F.S.G., 2009. Zinc requirement of maize hybrids and indigenous varieties on Udic Haplustalf. Journal of Plant Nutrition 32(3): 470-478.

Kaya, C., Higgs, D., 2002. Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae 93(1): 53–64.

Krężel, A., Maret, W., 2016. The biological inorganic chemistry of zinc ions.. Archives of Biochemistry and Biophysics 611: 3–19.

Kutman, U.B., Yildiz, B., Cakmak, I., 2011. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science 53(1): 118-125.

Kutman, U.B., Yildiz, B., Ceylan, Y., Ova, E.A., Cakmak, I., 2012. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil 361(1-2): 177–187.

Lim, K., Riddell, L., Nowson, C., Booth, A., Szymlek-Gay, E., 2013. Iron and zinc nutrition in the economically-developed world: A review. Nutrients 5(8): 3184–3211.

Liu, D., Liu, Y., Zhang, W., Chen, X., Zou, C., 2017. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9(465): 1-14.

Ma, G.S., Jin, Y., Piao, J. H., Kok, F., Guusje, B., Jacobsen, E., 2005. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. Journal of Agricultural and Food Chemistry 53(26): 10285–10290.

Marounek, M., Skřivan, M., Rosero, O., Rop, O., 2010. Intestinal and total tract phytate digestibility and phytase activity in the digestive tract of hens fed a wheat-maize-soya bean diet. Journal of Animal and Feed Sciences 19:433–442.

Miller, L.V., Krebs, N.F., Hambidge, M.K., 2007. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition 137(1):135-141.

Morris, E.R., Ellis, R., 1989. Usefulness of the dietary phytic acid/ zinc molar ratio as an index of zinc bioavailability to rats and humans. Biological Trace Element Research 19:107–117.

Muthukumararaja, T.M., Sriramachandrasekharan, M.V., 2012. Effect of zinc on yield, zinc nutrition and zinc use efficiency of lowland rice. Journal of Agricultural Technology 8(2): 551-561.

NAMC, 2018. Climate maps. National Metrological Centre-Pakistan Metrological Department. Available at [access date: 24.05.2018]: http://namc.pmd.gov.pk/climate-maps.php.

Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Page, A.L, Miller, R.H., Keeney, D.R. (Eds.). 2nd Edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA. pp. 539-579.

Pedda Babu, P., Shanti, M., Prasad, B.R., Minhas, P.S., 2007. Effect of zinc on rice in rice-blackgram gropping system in saline soils. The Andhra Agricultural Journal 54(1-2): 47-50.

Poursarebani, N., Nussbaumer, T., Šimková, H., Šafář, J., Witsenboer, H., van Oeveren, J., Doležel, J., Mayer, K.F.X., Stein, N., Schnurbusch, T., 2014. Whole‐genome profiling and shotgun sequencing delivers an anchored, gene‐decorated, physical map assembly of bread wheat chromosome 6A. The Plant Journal 79(2): 334–347.

Raboy, V., 2000. Low-phytic-acid grains. Food Nutrition Bulletin 21(4):423–427.

 Rashid, A., 1986. Mapping Zn fertility of soils using indicator plants and soils analysis. PhD Dissertation, University of Hawaii, HI, USA.

Rosado, J.L., Hambidge, K.M., Miller, L.V., Garcia, O.P., Westcott, J., Gonzalez, K., Conde, J., Hotz, C., Pfeiffer, W., Ortiz-Monasterio, I., Krebs, N.F., 2009. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. The Journal of Nutrition 139(10): 1920–1925.

Ryan, M.H., McInerney, J.K., Record, I.R., Angus, J.F., 2008. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of the Food and Agriculture 88: 1208–1216.

Sarfraz. M., Mehdi, S.M., Abid, M., Akram, M., 2008. External and Internal Phosphorus Requirement of Wheat in Bhalike Soil Series of Pakistan. Pakistan Journal of Botany 40(5): 2031-2040.

Soltanpour, P.N., Workman, S., 1979. Modification of the NH4 HCO3‐DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis 10(11): 1411‒1420.

Sperotto, R.A., Ricachenevsky, F.K., de A Waldow, V., Müller, A.L.H., Dressler, V.L., Fett, J.P., 2013. Rice grain Fe, Mn and Zn accumulation: How important are flag leaves and seed number? Plant, Soil and Environment 59(6): 262–266.

Steel, R. G. D., Torrie, J. H., Dickey, D., 1997. Principles and Procedures of Statistics: A Biometric Approach, 3rd ed. McGraw-Hill Book Co., New York, NY, USA p. 666.

Tang, J., Zou, C., He, Z., Shi, R., Ortiz-Monasterio, I., Qu, Y., Zhang, Y., 2008. Mineral element distributions in milling fractions of Chinese wheats. Journal of Cereal Science 48(3): 821–828.

Wang, Z., Liu, Q., Pan, F., Yuan, L., Yin, X., 2015. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research 184: 58–64.

Zhang, Y.Q., Sun, Y.X., Ye, Y.L., Karim, M.R., Xue, Y.F., Yan, P., Meng, Q.F., Cui, Z.L., Cakmak, I., Zhang, F.S., Zou, C.Q., 2012. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research 125: 1-7.

Abstract

Zinc (Zn) deficiency causes low crop production and malnutrition in human. Agronomic biofortification of food crops can resolve the issues of global food security and human nutrition on sustainable basis. Field experiments were conducted to improve Zn bioavailability, growth and yield of wheat in response to varying Zn application rates for two consecutive years (2016-17 & 2017-18). Significant increase in grain yield was recorded with the application of Zn. Highest grain yield (5.41 t ha-1) was recorded with the application of 5.00 kg Zn ha-1. Human available Zn fraction was also improved in response to Zn application. Zn application resulted in lowering phytate/Zn molar ration in wheat grains. Higher Zn accumulation (338.72 g ha-1) was observed by applying 7.5 kg Zn ha-1. Zinc application was found critical to meet internal (36.53 µg g-1) and external (4.48 kg Zn ha-1) Zn requirements to achieve near maximum yield of wheat. The results reinforced the concept of Zn fertilization to achieve better productivity and quality.

Keywords: Biofortification, cereals, food security, nutrition.

References

Akram, M.A., Depar, N., Memon, M.Y., 2017. Synergistic use of nitrogen and zinc to bio-fortify zinc in wheat grains. Eurasian Journal of Soil Science 6(4): 319-326.

Anderson, J.M., Ingram, J.S.I., 1993. Tropical Soil Biology and Fertility. CAB International, Wallingford, UK. 221p.

Andreini, C., Banci, L., Bertini, I., Rosato, A., 2006. Zinc through the three domains of life. Journal of Proteome Research 5(11): 3173–3178.

Barunawati, N., Giehl, R.F.H., Bauer, B., von Wiren, N., 2013. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Frontiers in Plant Science 4 :320. 

Bouis, H.E., Saltzman, A., 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security 12: 49-58.

Bouis, H.E., Welch, R.M., 2010. Biofortification–A sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Science 50(1): S20–S32.

Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54(5): 464‒465.

Cakmak, I., 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil 302: 1–17.

Cakmak, I., Kalayci, M., Kaya, Y., Torun, A. A., Aydin, N., Wang, Y., Arise, Z., Erdem, H.,  Gokmen, O., Ozturk, L., Horst, W.J.,  2010. Biofortification and localization of Zn in wheat grain. Journal of Agricultural and Food Chemistry 58(16): 9092–9102.

Cakmak, I., Kutman, U.B., 2018. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science 69(1): 172-180.

Chen, Y., Cui, J., Tian, X., Zhao, A., Li, M., Wang, S., Li, X., Jia, Z., Liu, K., 2017. Effect of straw amendment on soil Zn availability and ageing of exogenous water-soluble Zn applied to calcareous soil. PLoS One 12(1): e0169776.

Erdal, I., Yilmaz, A., Taban, S., Eker, S., Torun, B., Cakmak, I., 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition 25(1): 113–127.

Fageria, N.K., dos Santos, A.B., Cobucci, T., 2011. Zinc nutrition of lowland rice. Communications in Soil Science Plant Analysis 42(14): 1719-1727.

Farooq, M., Ullah, A., Rehman, A., Nawaz, A., Nadeem, A., Wakeel, A., Nadeem, F., Siddique, H.M.K., 2018. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crop Research 216: 53-62.

Genc, Y., McDonald, G.K., Graham, R.D., 2002. Critical deficiency concentration of zinc in barley genotypes differing in zinc efficiency and its relations to growth responses. Journal of Plant Nutrition 25(3): 545-560.

Gibson, R.S., 2012. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil 361(1-2): 291–299.

Gupta, N., Ram, H., Kumar, B., 2016. Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology 15(1): 89-109.

Hambidge, K.M., Miller, L.V., Westcott, J.E., Sheng, X., Krebs, N.F., 2010. Zinc bioavailability and homeostasis. American Journal of Clinical Nutrition 91(5): 1478S–1483S.

Harland, B.F., Morris, E.R., 1995. Phytate: A good or a bad food component?. Nutrition Research 15(5): 733-754.

Haug, W., Lantzsch, H., 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture 34(12): 1423-1426.

Hussain, S., Maqsood, M.A., Rengel, Z., Aziz, T., Abid, M., 2013. Estimated zinc bioavailability in milling fractions of biofortified wheat grains and in flours of different extraction rates. International Journal of Agriculture and Biology 15(5): 383–388.

Imran, M., Kanwal, S., Hussain, S., Aziz, T., Maqsood, M.A., 2015. Efficacy of zinc application methods for concentration and estimated bioavailability of Zn in grains of rice grown on a calcareous soil. Pakistan Journal of Agricultural Sciences 52(1): 169-175

Jackson, M.L., 1962. Soil chemical Analysis. Prentice Hall Inc, Englewood Cliffs, NJ, USA. pp.151-153

Juliano, B.O., 1993. RICE in human nutrition. Food and Agriculture Organization of the United Nations, Rome. Italy. Available at [access date: 18.07.2019]: http://www.fao.org/3/t0567e/T0567E00.htm

Kanwal, S., Rahmatullah, Maqsood, M.A., Bakhat, H.F.S.G., 2009. Zinc requirement of maize hybrids and indigenous varieties on Udic Haplustalf. Journal of Plant Nutrition 32(3): 470-478.

Kaya, C., Higgs, D., 2002. Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae 93(1): 53–64.

Krężel, A., Maret, W., 2016. The biological inorganic chemistry of zinc ions.. Archives of Biochemistry and Biophysics 611: 3–19.

Kutman, U.B., Yildiz, B., Cakmak, I., 2011. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science 53(1): 118-125.

Kutman, U.B., Yildiz, B., Ceylan, Y., Ova, E.A., Cakmak, I., 2012. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil 361(1-2): 177–187.

Lim, K., Riddell, L., Nowson, C., Booth, A., Szymlek-Gay, E., 2013. Iron and zinc nutrition in the economically-developed world: A review. Nutrients 5(8): 3184–3211.

Liu, D., Liu, Y., Zhang, W., Chen, X., Zou, C., 2017. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9(465): 1-14.

Ma, G.S., Jin, Y., Piao, J. H., Kok, F., Guusje, B., Jacobsen, E., 2005. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. Journal of Agricultural and Food Chemistry 53(26): 10285–10290.

Marounek, M., Skřivan, M., Rosero, O., Rop, O., 2010. Intestinal and total tract phytate digestibility and phytase activity in the digestive tract of hens fed a wheat-maize-soya bean diet. Journal of Animal and Feed Sciences 19:433–442.

Miller, L.V., Krebs, N.F., Hambidge, M.K., 2007. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition 137(1):135-141.

Morris, E.R., Ellis, R., 1989. Usefulness of the dietary phytic acid/ zinc molar ratio as an index of zinc bioavailability to rats and humans. Biological Trace Element Research 19:107–117.

Muthukumararaja, T.M., Sriramachandrasekharan, M.V., 2012. Effect of zinc on yield, zinc nutrition and zinc use efficiency of lowland rice. Journal of Agricultural Technology 8(2): 551-561.

NAMC, 2018. Climate maps. National Metrological Centre-Pakistan Metrological Department. Available at [access date: 24.05.2018]: http://namc.pmd.gov.pk/climate-maps.php.

Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Page, A.L, Miller, R.H., Keeney, D.R. (Eds.). 2nd Edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA. pp. 539-579.

Pedda Babu, P., Shanti, M., Prasad, B.R., Minhas, P.S., 2007. Effect of zinc on rice in rice-blackgram gropping system in saline soils. The Andhra Agricultural Journal 54(1-2): 47-50.

Poursarebani, N., Nussbaumer, T., Šimková, H., Šafář, J., Witsenboer, H., van Oeveren, J., Doležel, J., Mayer, K.F.X., Stein, N., Schnurbusch, T., 2014. Whole‐genome profiling and shotgun sequencing delivers an anchored, gene‐decorated, physical map assembly of bread wheat chromosome 6A. The Plant Journal 79(2): 334–347.

Raboy, V., 2000. Low-phytic-acid grains. Food Nutrition Bulletin 21(4):423–427.

 Rashid, A., 1986. Mapping Zn fertility of soils using indicator plants and soils analysis. PhD Dissertation, University of Hawaii, HI, USA.

Rosado, J.L., Hambidge, K.M., Miller, L.V., Garcia, O.P., Westcott, J., Gonzalez, K., Conde, J., Hotz, C., Pfeiffer, W., Ortiz-Monasterio, I., Krebs, N.F., 2009. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. The Journal of Nutrition 139(10): 1920–1925.

Ryan, M.H., McInerney, J.K., Record, I.R., Angus, J.F., 2008. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of the Food and Agriculture 88: 1208–1216.

Sarfraz. M., Mehdi, S.M., Abid, M., Akram, M., 2008. External and Internal Phosphorus Requirement of Wheat in Bhalike Soil Series of Pakistan. Pakistan Journal of Botany 40(5): 2031-2040.

Soltanpour, P.N., Workman, S., 1979. Modification of the NH4 HCO3‐DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis 10(11): 1411‒1420.

Sperotto, R.A., Ricachenevsky, F.K., de A Waldow, V., Müller, A.L.H., Dressler, V.L., Fett, J.P., 2013. Rice grain Fe, Mn and Zn accumulation: How important are flag leaves and seed number? Plant, Soil and Environment 59(6): 262–266.

Steel, R. G. D., Torrie, J. H., Dickey, D., 1997. Principles and Procedures of Statistics: A Biometric Approach, 3rd ed. McGraw-Hill Book Co., New York, NY, USA p. 666.

Tang, J., Zou, C., He, Z., Shi, R., Ortiz-Monasterio, I., Qu, Y., Zhang, Y., 2008. Mineral element distributions in milling fractions of Chinese wheats. Journal of Cereal Science 48(3): 821–828.

Wang, Z., Liu, Q., Pan, F., Yuan, L., Yin, X., 2015. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research 184: 58–64.

Zhang, Y.Q., Sun, Y.X., Ye, Y.L., Karim, M.R., Xue, Y.F., Yan, P., Meng, Q.F., Cui, Z.L., Cakmak, I., Zhang, F.S., Zou, C.Q., 2012. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research 125: 1-7.



Eurasian Journal of Soil Science