Eurasian Journal of Soil Science

Volume 9, Issue 1, Jan 2020, Pages 18 - 23
DOI: 10.18393/ejss.629344
Stable URL: http://ejss.fess.org/10.18393/ejss.629344
Copyright © 2020 The authors and Federation of Eurasian Soil Science Societies



Soil hydraulic properties: A simple and practical approach to estimate the number of samples

X

Article first published online: 04 Oct 2019 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 96 | 628

Salemi,L., Fernandes,R., Silva,R., Garcia,L., Moraes,J., Groppo,J., Martinelli,L., 2020. Soil hydraulic properties: A simple and practical approach to estimate the number of samples. Eurasian J Soil Sci 9(1):18 - 23. DOI : 10.18393/ejss.629344
Salemi,L.,Fernandes,R.Silva,R.Garcia,L.Moraes,J.Groppo,J.,& Martinelli,L. Soil hydraulic properties: A simple and practical approach to estimate the number of samples Eurasian Journal of Soil Science, 9(1):18 - 23. DOI : 10.18393/ejss.629344
Salemi,L.,Fernandes,R.Silva,R.Garcia,L.Moraes,J.Groppo,J., and ,Martinelli,L."Soil hydraulic properties: A simple and practical approach to estimate the number of samples" Eurasian Journal of Soil Science, 9.1 (2020):18 - 23. DOI : 10.18393/ejss.629344
Salemi,L.,Fernandes,R.Silva,R.Garcia,L.Moraes,J.Groppo,J., and ,Martinelli,L. "Soil hydraulic properties: A simple and practical approach to estimate the number of samples" Eurasian Journal of Soil Science,9(Jan 2020):18 - 23 DOI : 10.18393/ejss.629344
L,Salemi.R,Fernandes.R,Silva.L,Garcia.J,Moraes.J,Groppo.L,Martinelli "Soil hydraulic properties: A simple and practical approach to estimate the number of samples" Eurasian J. Soil Sci, vol.9, no.1, pp.18 - 23 (Jan 2020), DOI : 10.18393/ejss.629344
Salemi,Luiz Felippe ;Fernandes,Rafael Pires ;Silva,Robson Willians da Costa ;Garcia,Lara Gabrielle ;Moraes,Jorge Marcos de ;Groppo,Juliano Daniel ;Martinelli,Luiz Antonio Soil hydraulic properties: A simple and practical approach to estimate the number of samples. Eurasian Journal of Soil Science, (2020),9.1:18 - 23. DOI : 10.18393/ejss.629344

How to cite

Salemi, L., Fernandes, R., Silva, R., Garcia, L., Moraes, J., Groppo, J., Martinelli, L., 2020. Soil hydraulic properties: A simple and practical approach to estimate the number of samples. Eurasian J. Soil Sci. 9(1): 18 - 23. DOI : 10.18393/ejss.629344

Author information

Luiz Felippe Salemi , Núcleo de Estudos e Pesquisas Ambientais e Limnológicos, Faculdade de Planaltina, Universidade de Brasília. Área Universitária 01, Bairro Vila Nossa Senhora de Fátima, CEP 73345-010, Brasília (Planaltina), Distrito Federal, Brasil
Rafael Pires Fernandes , Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, 303, Bairro São Dimas, CEP 13400-970, Piracicaba, São Paulo, Brasil
Robson Willians da Costa Silva , Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, 303, Bairro São Dimas, CEP 13400-970, Piracicaba, São Paulo, Brasil
Lara Gabrielle Garcia , Laboratório de Hidrologia Florestal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. Avenida Pádua Dias, 11, São Dimas, CEP 13418-900, Piracicaba, São Paulo, Brasil
Jorge Marcos de Moraes , Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, 303, Bairro São Dimas, CEP 13400-970, Piracicaba, São Paulo, Brasil
Juliano Daniel Groppo , Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, 303, Bairro São Dimas, CEP 13400-970, Piracicaba, São Paulo, Brasil
Luiz Antonio Martinelli , Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, 303, Bairro São Dimas, CEP 13400-970, Piracicaba, São Paulo, Brasil

Publication information

Article first published online : 04 Oct 2019
Manuscript Accepted : 20 Sep 2019
Manuscript Received: 20 May 2019
DOI: 10.18393/ejss.629344
Stable URL: http://ejss.fesss.org/10.18393/ejss.629344

Abstract

There have been a number of studies dealing with soil hydraulic properties. Yet, there is a poor discussion on the number of samples necessary to represent such variables that usually vary orders of magnitude in space. In the present paper, we examine the adequate number of samples for two soil saturated hydraulic conductivity (Ksat) data sets: (1) normal distribution (a 40 year-old pasture) and (2) non-normal distribution (primary forest). To assess the adequate number of samples in each case, we used for normal distribution, an statistical criterion of standard deviation lower than 5% compared to a high sampling effort (n = 25) as an indicative of a proper representation of Ksat variability. In the case of non-normal distribution, we used the same criterion but using median absolute deviation (a non-parametric statistics). Both data sets were available in Salemi et al. (2013) and were Ksat measured at 0.15 m soil depth for medium-textured inceptisols in São Paulo State, Brazil. For each data set, we simulated 10 ‘new’ samplings in which we calculated mean and standard deviation from sample 1 to 25 (for normal data) and median and median absolute deviation (for non-normal data). We found that, on average, at least 17 to 22 samples had to be collected to meet the adopted criterion for normal data whereas 20 to 25 had to be collected for non-normal data. Such numbers of samples exceed those used in a number of papers. Additional examples of this method with a light modification are given to establish number of samples in new study areas as well as to estimate number of samples when comparing two (or more) land-uses. Simple and practical procedures like those presented here could estimate the number of samples that adequately represents soil hydraulic properties variability.

Keywords

Inceptisols, sampling, variation, water movement.

Corresponding author

References

Amoozegar A., 1992. Compact constant head permeameter: a convenient device for measuring hydraulic conductivity. In: Advances in measurement of soil physical properties: bringing theory into practice. Topp, C.G., Reynolds, W.D., Green, R.E. (Eds.). Soil Science Society of America, Madison, WI, USA. pp. 31-42.

Araújo, R., Goedert, W.J., Lacerda, M.P.C., 2007. Soil quality under different uses and native cerrado. Revista Brasileira de Ciência do Solo 31: 1099-108.

Barreto, G.B., 1986. Irrigação: princípios, métodos e prática. Campinas: Instituto Campineiro de Ensino Agrícola. 236p.

Bertoni, J.; Lombardi Neto, F., 1990. Conservação do Solo. Ícon, São Paulo. 394p.

Beutler, A.N., Silva, M.L.N., Curi, N., Ferreira, M.M., Cruz, J.C., Pereira Filho, I.A., 2001. Resistence to penetration and permeability of a typic dystrophic red latosol under management systems in the cerrado region. Revista Brasileira de Ciência do Solo 25(1): 167-177.

Bonell, M., Purandara, B.K., Venkatesh, B., Krishnaswamy, J., Acharya, H.A.K., Singh, U.V., Jayakumar, R., Chappell, N, 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology 391(1-2): 47-62.

Bono, J.A.M., Macedo, M.C.M., Tormena, C.A., Nanni, M.R., Gomes, E.P., Müller, M.M.L., 2012.  Water infiltration into an oxisol in the South-west Cerrado region under different use and management systems. Revista Brasileira de Ciência do Solo 36: 1845-1853.

Borges, T.A., Oliveira, F.A., Silva, E.M., Goedert, W.J., 2009. Evaluation of soil-water parameters of a Red Latosol under pasture and ‘cerrado’. Revista Brasileira de Engenharia Agrícola e Ambiental 13(1):18-25.

Elsenbeer, H., Newton, B.E., Dunne, T., de Moraes, J.M., 1999. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrological Processes 13(9): 1417-1422.

Ghimire, C.P., Bonell, M., Bruijnzeel, L.A., Coles, N., Lubczynski, M.W., 2013. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: effects on soil hydraulic conductivity and overland flow production. Journal Geophysical Research Earth Surface 118(4): 2528-2545.

Ghimire, C.P., Bruijnzeel, L.A., Bonell, M., Coles, N., Lubczynski, M.W., Gilmour, D.A. 2014. The effect of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal. Ecohydrology 7(2):478-495.

Gotelli, N.J., Chao, A., 2013. Measuring an estimating species richness, species diversity, and biotic similarity from sampling data. In: Encyclopedia of Biodiversity. Levin, S.A., (Ed.), Second edition. Vol.5, Waltham, MA, Academic Press, pp.195-211.

Hassler, S.K., Lark, R.M., Zimmermann, B., Elsenbeer, H., 2014. Which sampling design to monitor saturated hydraulic conductivity? European Journal of Soil Science 65(6): 792-802.

Hassler, S.K., Zimmermann, B., van Breugel, M., Hall, J.S., Elsenbeer, H. 2011. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecology and Management 261(10): 1634-1642.

Hewlett, J.D., 1982. Principles of Forest Hydrology. The University of Georgia Press, Athens, Georgia, USA. 183p.

Kirkby, M.J., 1978. Hillslope Hydrology. Chichester: John Wiley & Sons. 375p.

Mesquita, M.G.B.F., Moraes, S.O., 2004. The dependence of the saturated hydraulic conductivity on physical soil properties. Ciência Rural 34(3): 963-969.

Moraes, J.M., Schuler, A.E., Dunne, T., Figueiredo, R.O., Victoria, R.L., 2006. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20(12): 2509-2525.

Reichardt, K., Timm, L.C., 2012. Solo, Planta e Atmosfera: Conceitos e Aplicações. Manole, São Paulo. 594p.

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society American Journal 54(5): 1233-1241.

Salemi, L.F., Groppo, J.D., Trevisan, R., Moraes, J.M., Ferraz, S.F.B., Villani, J.P., Duarte-Neto, P.J., Martinelli, L.A. 2013. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology 499: 100-109.

Scheffler, R, Neill, C, Krusche, AV, Elsenbeer, HA. 2011. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture Ecosystem and Environment 144(1): 281-289.

Silva, CL, Kato, E. 1998. Evaluation of models for the prevision of water infiltration in the soil under savanna. Pesquisa Agropecuária Brasileira 33(7): 1149-1158.

Souza, Z.M., Alves, M.C., 2003. Water movement and resistence to penetration in a distrophic Red Latosol of cerrado under different uses and management. Revista Brasileira de Engenharia Agrícola e Ambiental 7(1): 18-23.

Vilarinho, R.K., Koetz, M., Schlichting, A.F., Silva, M.C., Bonfum-Silva E.M., 2013. Determination of water steady infiltration rate in native soil from Cerrado. Revista Brasileira de Agricultura Irrigada 7(1):17-26.

Zimmermann, B., Elsenbeer, H., Moraes, J.M., 2006. The influence of land-use changes on soil hydraulic properties: implications for runoff generation. Forest Ecology and Management 222(1-3): 29-38.

Abstract

There have been a number of studies dealing with soil hydraulic properties. Yet, there is a poor discussion on the number of samples necessary to represent such variables that usually vary orders of magnitude in space. In the present paper, we examine the adequate number of samples for two soil saturated hydraulic conductivity (Ksat) data sets: (1) normal distribution (a 40 year-old pasture) and (2) non-normal distribution (primary forest). To assess the adequate number of samples in each case, we used for normal distribution, an statistical criterion of standard deviation lower than 5% compared to a high sampling effort (n = 25) as an indicative of a proper representation of Ksat variability. In the case of non-normal distribution, we used the same criterion but using median absolute deviation (a non-parametric statistics).  Both data sets were available in Salemi et al. (2013) and were Ksat measured at 0.15 m soil depth for medium-textured inceptisols in São Paulo State, Brazil. For each data set, we simulated 10 ‘new’ samplings in which we calculated mean and standard deviation from sample 1 to 25 (for normal data) and median and median absolute deviation (for non-normal data). We found that, on average, at least 17 to 22 samples had to be collected to meet the adopted criterion for normal data whereas 20 to 25 had to be collected for non-normal data. Such numbers of samples exceed those used in a number of papers. Additional examples of this method with a light modification are given to establish number of samples in new study areas as well as to estimate number of samples when comparing two (or more) land-uses. Simple and practical procedures like those presented here could estimate the number of samples that adequately represents soil hydraulic properties variability.  

Keywords: Inceptisols, sampling, variation, water movement.

References

Amoozegar A., 1992. Compact constant head permeameter: a convenient device for measuring hydraulic conductivity. In: Advances in measurement of soil physical properties: bringing theory into practice. Topp, C.G., Reynolds, W.D., Green, R.E. (Eds.). Soil Science Society of America, Madison, WI, USA. pp. 31-42.

Araújo, R., Goedert, W.J., Lacerda, M.P.C., 2007. Soil quality under different uses and native cerrado. Revista Brasileira de Ciência do Solo 31: 1099-108.

Barreto, G.B., 1986. Irrigação: princípios, métodos e prática. Campinas: Instituto Campineiro de Ensino Agrícola. 236p.

Bertoni, J.; Lombardi Neto, F., 1990. Conservação do Solo. Ícon, São Paulo. 394p.

Beutler, A.N., Silva, M.L.N., Curi, N., Ferreira, M.M., Cruz, J.C., Pereira Filho, I.A., 2001. Resistence to penetration and permeability of a typic dystrophic red latosol under management systems in the cerrado region. Revista Brasileira de Ciência do Solo 25(1): 167-177.

Bonell, M., Purandara, B.K., Venkatesh, B., Krishnaswamy, J., Acharya, H.A.K., Singh, U.V., Jayakumar, R., Chappell, N, 2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology 391(1-2): 47-62.

Bono, J.A.M., Macedo, M.C.M., Tormena, C.A., Nanni, M.R., Gomes, E.P., Müller, M.M.L., 2012.  Water infiltration into an oxisol in the South-west Cerrado region under different use and management systems. Revista Brasileira de Ciência do Solo 36: 1845-1853.

Borges, T.A., Oliveira, F.A., Silva, E.M., Goedert, W.J., 2009. Evaluation of soil-water parameters of a Red Latosol under pasture and ‘cerrado’. Revista Brasileira de Engenharia Agrícola e Ambiental 13(1):18-25.

Elsenbeer, H., Newton, B.E., Dunne, T., de Moraes, J.M., 1999. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrological Processes 13(9): 1417-1422.

Ghimire, C.P., Bonell, M., Bruijnzeel, L.A., Coles, N., Lubczynski, M.W., 2013. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: effects on soil hydraulic conductivity and overland flow production. Journal Geophysical Research Earth Surface 118(4): 2528-2545.

Ghimire, C.P., Bruijnzeel, L.A., Bonell, M., Coles, N., Lubczynski, M.W., Gilmour, D.A. 2014. The effect of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal. Ecohydrology 7(2):478-495.

Gotelli, N.J., Chao, A., 2013. Measuring an estimating species richness, species diversity, and biotic similarity from sampling data. In: Encyclopedia of Biodiversity. Levin, S.A., (Ed.), Second edition. Vol.5, Waltham, MA, Academic Press, pp.195-211.

Hassler, S.K., Lark, R.M., Zimmermann, B., Elsenbeer, H., 2014. Which sampling design to monitor saturated hydraulic conductivity? European Journal of Soil Science 65(6): 792-802.

Hassler, S.K., Zimmermann, B., van Breugel, M., Hall, J.S., Elsenbeer, H. 2011. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecology and Management 261(10): 1634-1642.

Hewlett, J.D., 1982. Principles of Forest Hydrology. The University of Georgia Press, Athens, Georgia, USA. 183p.

Kirkby, M.J., 1978. Hillslope Hydrology. Chichester: John Wiley & Sons. 375p.

Mesquita, M.G.B.F., Moraes, S.O., 2004. The dependence of the saturated hydraulic conductivity on physical soil properties. Ciência Rural 34(3): 963-969.

Moraes, J.M., Schuler, A.E., Dunne, T., Figueiredo, R.O., Victoria, R.L., 2006. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20(12): 2509-2525.

Reichardt, K., Timm, L.C., 2012. Solo, Planta e Atmosfera: Conceitos e Aplicações. Manole, São Paulo. 594p.

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society American Journal 54(5): 1233-1241.

Salemi, L.F., Groppo, J.D., Trevisan, R., Moraes, J.M., Ferraz, S.F.B., Villani, J.P., Duarte-Neto, P.J., Martinelli, L.A. 2013. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology 499: 100-109.

Scheffler, R, Neill, C, Krusche, AV, Elsenbeer, HA. 2011. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture Ecosystem and Environment 144(1): 281-289.

Silva, CL, Kato, E. 1998. Evaluation of models for the prevision of water infiltration in the soil under savanna. Pesquisa Agropecuária Brasileira 33(7): 1149-1158.

Souza, Z.M., Alves, M.C., 2003. Water movement and resistence to penetration in a distrophic Red Latosol of cerrado under different uses and management. Revista Brasileira de Engenharia Agrícola e Ambiental 7(1): 18-23.

Vilarinho, R.K., Koetz, M., Schlichting, A.F., Silva, M.C., Bonfum-Silva E.M., 2013. Determination of water steady infiltration rate in native soil from Cerrado. Revista Brasileira de Agricultura Irrigada 7(1):17-26.

Zimmermann, B., Elsenbeer, H., Moraes, J.M., 2006. The influence of land-use changes on soil hydraulic properties: implications for runoff generation. Forest Ecology and Management 222(1-3): 29-38.



Eurasian Journal of Soil Science