Eurasian Journal of Soil Science

Volume 8, Issue 3, Jun 2019, Pages 257-266
DOI: 10.18393/ejss.567359
Stable URL: http://ejss.fess.org/10.18393/ejss.567359
Copyright © 2019 The authors and Federation of Eurasian Soil Science Societies



Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia

X

Article first published online: 18 May 2019 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 65 | 691

Haselow,L., Rupp,H., Bondarovich,A., Meissner,R., 2019. Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia. Eurasian J Soil Sci 8(3):257-266. DOI : 10.18393/ejss.567359
Haselow,L.,Rupp,H.Bondarovich,A.,& Meissner,R. Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia Eurasian Journal of Soil Science, 8(3):257-266. DOI : 10.18393/ejss.567359
Haselow,L.,Rupp,H.Bondarovich,A., and ,Meissner,R."Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia" Eurasian Journal of Soil Science, 8.3 (2019):257-266. DOI : 10.18393/ejss.567359
Haselow,L.,Rupp,H.Bondarovich,A., and ,Meissner,R. "Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia" Eurasian Journal of Soil Science,8(Jun 2019):257-266 DOI : 10.18393/ejss.567359
L,Haselow.H,Rupp.A,Bondarovich.R,Meissner "Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia" Eurasian J. Soil Sci, vol.8, no.3, pp.257-266 (Jun 2019), DOI : 10.18393/ejss.567359
Haselow,Lisa ;Rupp,Holger ;Bondarovich,Andrej A. ;Meissner,Ralph Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia. Eurasian Journal of Soil Science, (2019),8.3:257-266. DOI : 10.18393/ejss.567359

How to cite

Haselow, L., Rupp, H., Bondarovich, A., Meissner, R., 2019. Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia. Eurasian J. Soil Sci. 8(3): 257-266. DOI : 10.18393/ejss.567359

Author information

Lisa Haselow , Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Falkenberg 55, 39615 Altmaerkische Wische, Germany
Holger Rupp , Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Falkenberg 55, 39615 Altmaerkische Wische, Germany
Andrej A. Bondarovich , Faculty of Geography, Altai State University, Barnaul, Russia
Ralph Meissner , Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Falkenberg 55, 39615 Altmaerkische Wische, Germany

Publication information

Article first published online : 18 May 2019
Manuscript Accepted : 14 May 2019
Manuscript Received: 08 Jan 2019
DOI: 10.18393/ejss.567359
Stable URL: http://ejss.fesss.org/10.18393/ejss.567359

Abstract

This study quantifies actual evapotranspiration (ETa) for a period from June to September 2016 measured by two weighable gravitation lysimeters in a semi-arid grassland in southwest Siberia. As part of a crop rotation system, the first lysimeter was fallow but covered with ruderal vegetation. The second lysimeter is permanently characterized by pristine steppe vegetation. In addition to ETa measurements, the reference evapotranspiration (ET0) is computed by a Penman-Monteith model. The estimates are related to the ETa records and the model is evaluated with regard to its performance in a semi-arid environment. The results indicated an ETa driven by energy but limited by water. Within 115 days the total amounts of ETa ranged from 205 mm to 374.1 mm, and daily values varied from 0.1 to 6.9 mm day-1. The large differences are caused by the different vegetation cover of the lysimeters. Due to the high and dense canopy of the pristine steppe vegetation, the transpiration term was considerably higher compared to the ruderal vegetation where soil evaporation took the major part. The daily ETa records differed on average by -91.1% to the ET0 estimates. The statistical analyses yielded a low correlation between ETa of the ruderal vegetation and ET0 but an acceptable model performance for the pristine steppe. However, it was observed that ETa occasionally exceeds ET0, particularly after precipitation. Due to the high water availability and the subsequent rise of ETa, ET0 was underestimated, whereas it was overestimated during dry periods. Finally, the quality of the Penman-Monteith model varied substantially with the water supply at the study site.

Keywords

Actual evapotranspiration, Penman-Monteith FAO-56, semi-arid, Siberia, weighable gravitation lysimet

Corresponding author

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56, 300p.

Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management 98(6): 899-920.

Amatya, D.M., Irmak, S., Gowda, P., Sun, G., Nettles, J.E., Douglas-Mankin, K.R., 2016. Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling. Transactions of the ASABE 59(2): 555-560.

Armstrong, R.N., Pomeroy, J.W., Martz, L.W., 2008. Evaluation of three evaporation estimation methods in a Canadian prairie landscape. Hydrological Processes 22(15): 2801-2815.

Bagley, J.E., Desai, A.R., Dirmeyer, P.A., Foley, J.A., 2012. Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environmental Research Letters 7(1): 014009.

Balykin, D., Puzanov, A., Stepahn, E., Meissner, R., 2016. Using the innovative lysimeter technology in the German-Russian research project "KULUNDA". In: Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Mueller, L., Sheudshen, A.K., Eulenstein, F., (Eds.). Springer Water Switzerland, pp. 387-399.

Degefie, D.T., Fleischer, E., Klemm, O., Soromotin, A.V., Soromotin, O.V., Tolstikov, A.V., Abramov, N.V., 2014. Climate extremes in South Western Siberia: past and future. Stochastic Environmental Research and Risk Assessment 28(8): 2161-2173.

DehghaniSanij, H., Yamamoto, T., Rasiah, V., 2004. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural Water Management 64(2): 91-106.

El Bably, A.Z., 2003. Estimation of evapotranspiration using statistical mode. In: Local Resources and Global Trades: Environments and Agriculture in the Mediterranean region Camarda, D., Grassini, L., (Eds.). Bari, Italy. CIHEAM, pp. 441-449.

Fleischer, E., Bölter, J., Klemm, O., 2015. Summer evapotranspiration in western Siberia: a comparison between eddy covariance and Penman method formulations. Hydrological Processes 29(20): 4498-4513.

Fraser, E.D.G., Simelton, E., Termansen, M., Gosling, S.N., South, A., 2013. "Vulnerability hotspots": integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology 170: 195-205.

Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., Vereecken, H., 2015. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences 19(5): 2145-2161.

Guo, D., Westra, S., Maier, H.R., 2016. An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling & Software 78: 216-224.

López-Urrea, R., Marin de Santa Olalla, F., Fabeiro, C., Moratalla, A., 2006. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management 85(1-2): 15-26.

Louzada, F.I.R. de O., Xavier, A.C., Pezzopane, J.E.M., 2018. Climatological water balance with data estimated by tropical rainfall measuring mission for the Doce river basin. Engenharia Agricola 38: 376-386.

Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers and Scientist 11(3): 277-288.

Martel, M., Glenn, A., Wilson, H., Kröbel, R., 2018. Simulation of actual evapotranspiration from agricultural landscapes in the Canadian Prairies. Journal of Hydrology: Regional Studies 15: 105-118.

Mauder, M., Genzel, S., Fu, J., Kiese, R., Soltani, M., Steinbrecher, R., Zeeman, M., Banerjee, T., De Roo, F., Kunstmann, H., 2017. Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrological Processes 32(1): 1-18.

Meissner, R., Bondarovich, A.A., Scherbinin, V.V., Ponkina, E.V., Matsyura, A.V., Puzanov, A.V., Rupp, H., Schmidt, G., Stephan, E., Illiger, P., Fruhauf, M., Harlamova, N.F., Galahov, V.P., Balykin, D.V., Rudev, N.V., 2016a. Calculation of water balance for the south desert area of Western Siberiaby international monitoring network data. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 6(2): 223-238.

Meissner, R., Rupp, H., Bondarovich, A.A., Rinklebe, J., 2016b. Soil water management in the Siberian Kulunda-dry steppe. International Scientific Conference. Conserving Soils and Water. 31.08.2016-03.09.2016, Burgas, Bulgaria. Book of Proocedings, pp.87-91.

Monteith, J.L., 1965. Evaporation and environment. 19th Symposia of the Society for Experimental Biology 19: 205-234.

Oberholzer, S., Prasuhn, V., Hund, A., 2017. Crop water use under Swiss pedoclimatic conditions - Evaluation of lysimeter data covering a seven-year period. Field Crops Research 211: 48-65.

Park, H., Yamazaki, T., Yamamoto, K., Ohta, T., 2008. Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agricultural and Forest Meteorology 148(12): 1990-2005.

Peters, A., Nehls, T., Schonsky, H., Wessolek, G., 2014. Separating precipitation and evapotranspiration from noise - a new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences 18(3): 1189-1198.

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100(2): 81-92.

Roth, D., Günther, R., Knoblauch, S., Michel, H., 2005. Wasserhaushaltsgrößen von Kulturpflanzen unter Feldbedingungen, In: Landwirtschaft und Landschaftspflege in Thüringen, Thüringer Landesanstalt für Landwirtschaft, (Ed.). Schriftenreihe Heft 1  Jena, pp. 159.

Sabziparvar, A.A., Tabari, H., 2010. Regional estimation of reference evapotranspiration in arid and semiarid regions. Journal of Irrigation and Drainage Engineering ASCE 136(10): 724-731.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36(8): 1627-1639.

Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., Wollschläger, U., 2013. Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences 19: 543-552.

Shi, T., Guan, D., Wu, J., Wang, A., Jin, C., Han, S., 2008. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. Journal of Geophysical Research 113: D19116.

Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A.V., Müller, D., 2017. Production potential in the "bread baskets" of Eastern Europe and Central Asia. Global Food Security 14: 38-53.

von Unold, G., Fank, J., 2008. Modular design of field lysimeters for specific application needs. Water, Air, & Soil Pollution: Focus 8(2): 233-242.

Wegehenkel, M., Zhang, Y., Zenker, T., Diestel, H., 2008. The use of lysimeter data for the test of two soil-water balance models: A case study. Journal of Plant Nutrition and Soil Science 171(5): 762-776.

Wegehenkel, M., Gerke, H.H., 2013. Comparison or real evapotranspiration measured by weighing lysimeters with simulations based on the Penman formula and a crop growth model. Journal of Hydrology and Hydromechanics 61(2): 161-172.

Wever, L.A., Flanagan, L.B., Carlson, P.J., 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology 112(1): 31-49.

Wohlfahrt, G., Ischick, C., Thalinger, B., Hörtnagl, L., Obojes, N., Hammerle, A., 2010. Insights from independent evapotranspiration estimates for closing the energy balance: A grassland study. Vadose Zone Journal 9(4): 1025-1033.

Xiao, H., Meissner, R., Seeger, J., Rupp, H., Borg, H., 2009. Testing the precision of a weighable gravitation lysimeter. Journal of Plant Nutrition and Soil Science 172(2): 194-200.

Yamazaki, T., Yabuki, H., Ishii, Y., Ohta, T., Ohata, T., 2004. Water and energy exchanges at forests and a grassland in eastern Siberia evaluated using a one-dimensional land surface model. Journal of Hydrometeorology 5: 504-515.

Yang, F., Zhang, Q., Wang, R., Zhou, J., 2014. Evapotranspiration measurement and crop coefficient estimation over a spring wheat farmland ecosystem in the Loess Plateau. PLOS One 9: e100031.

Abstract

This study quantifies actual evapotranspiration (ETa) for a period from June to September 2016 measured by two weighable gravitation lysimeters in a semi-arid grassland in southwest Siberia. As part of a crop rotation system, the first lysimeter was fallow but covered with ruderal vegetation. The second lysimeter is permanently characterized by pristine steppe vegetation. In addition to ETa measurements, the reference evapotranspiration (ET0) is computed by a Penman-Monteith model. The estimates are related to the ETa records and the model is evaluated with regard to its performance in a semi-arid environment. The results indicated an ETa driven by energy but limited by water. Within 115 days the total amounts of ETa ranged from 205 mm to 374.1 mm, and daily values varied from 0.1 to 6.9 mm day-1. The large differences are caused by the different vegetation cover of the lysimeters. Due to the high and dense canopy of the pristine steppe vegetation, the transpiration term was considerably higher compared to the ruderal vegetation where soil evaporation took the major part. The daily ETa records differed on average by -91.1% to the ET0 estimates. The statistical analyses yielded a low correlation between ETa of the ruderal vegetation and ET0 but an acceptable model performance for the pristine steppe. However, it was observed that ETa occasionally exceeds ET0, particularly after precipitation. Due to the high water availability and the subsequent rise of ETa, ET0 was underestimated, whereas it was overestimated during dry periods. Finally, the quality of the Penman-Monteith model varied substantially with the water supply at the study site.

Keywords: Actual evapotranspiration, Penman-Monteith FAO-56, semi-arid, Siberia, weighable gravitation lysimeter.

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56, 300p.

Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management 98(6): 899-920.

Amatya, D.M., Irmak, S., Gowda, P., Sun, G., Nettles, J.E., Douglas-Mankin, K.R., 2016. Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling. Transactions of the ASABE 59(2): 555-560.

Armstrong, R.N., Pomeroy, J.W., Martz, L.W., 2008. Evaluation of three evaporation estimation methods in a Canadian prairie landscape. Hydrological Processes 22(15): 2801-2815.

Bagley, J.E., Desai, A.R., Dirmeyer, P.A., Foley, J.A., 2012. Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environmental Research Letters 7(1): 014009.

Balykin, D., Puzanov, A., Stepahn, E., Meissner, R., 2016. Using the innovative lysimeter technology in the German-Russian research project "KULUNDA". In: Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Mueller, L., Sheudshen, A.K., Eulenstein, F., (Eds.). Springer Water Switzerland, pp. 387-399.

Degefie, D.T., Fleischer, E., Klemm, O., Soromotin, A.V., Soromotin, O.V., Tolstikov, A.V., Abramov, N.V., 2014. Climate extremes in South Western Siberia: past and future. Stochastic Environmental Research and Risk Assessment 28(8): 2161-2173.

DehghaniSanij, H., Yamamoto, T., Rasiah, V., 2004. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural Water Management 64(2): 91-106.

El Bably, A.Z., 2003. Estimation of evapotranspiration using statistical mode. In: Local Resources and Global Trades: Environments and Agriculture in the Mediterranean region Camarda, D., Grassini, L., (Eds.). Bari, Italy. CIHEAM, pp. 441-449.

Fleischer, E., Bölter, J., Klemm, O., 2015. Summer evapotranspiration in western Siberia: a comparison between eddy covariance and Penman method formulations. Hydrological Processes 29(20): 4498-4513.

Fraser, E.D.G., Simelton, E., Termansen, M., Gosling, S.N., South, A., 2013. "Vulnerability hotspots": integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology 170: 195-205.

Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., Vereecken, H., 2015. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences 19(5): 2145-2161.

Guo, D., Westra, S., Maier, H.R., 2016. An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling & Software 78: 216-224.

López-Urrea, R., Marin de Santa Olalla, F., Fabeiro, C., Moratalla, A., 2006. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management 85(1-2): 15-26.

Louzada, F.I.R. de O., Xavier, A.C., Pezzopane, J.E.M., 2018. Climatological water balance with data estimated by tropical rainfall measuring mission for the Doce river basin. Engenharia Agricola 38: 376-386.

Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers and Scientist 11(3): 277-288.

Martel, M., Glenn, A., Wilson, H., Kröbel, R., 2018. Simulation of actual evapotranspiration from agricultural landscapes in the Canadian Prairies. Journal of Hydrology: Regional Studies 15: 105-118.

Mauder, M., Genzel, S., Fu, J., Kiese, R., Soltani, M., Steinbrecher, R., Zeeman, M., Banerjee, T., De Roo, F., Kunstmann, H., 2017. Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrological Processes 32(1): 1-18.

Meissner, R., Bondarovich, A.A., Scherbinin, V.V., Ponkina, E.V., Matsyura, A.V., Puzanov, A.V., Rupp, H., Schmidt, G., Stephan, E., Illiger, P., Fruhauf, M., Harlamova, N.F., Galahov, V.P., Balykin, D.V., Rudev, N.V., 2016a. Calculation of water balance for the south desert area of Western Siberiaby international monitoring network data. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 6(2): 223-238.

Meissner, R., Rupp, H., Bondarovich, A.A., Rinklebe, J., 2016b. Soil water management in the Siberian Kulunda-dry steppe. International Scientific Conference. Conserving Soils and Water. 31.08.2016-03.09.2016, Burgas, Bulgaria. Book of Proocedings, pp.87-91.

Monteith, J.L., 1965. Evaporation and environment. 19th Symposia of the Society for Experimental Biology 19: 205-234.

Oberholzer, S., Prasuhn, V., Hund, A., 2017. Crop water use under Swiss pedoclimatic conditions - Evaluation of lysimeter data covering a seven-year period. Field Crops Research 211: 48-65.

Park, H., Yamazaki, T., Yamamoto, K., Ohta, T., 2008. Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agricultural and Forest Meteorology 148(12): 1990-2005.

Peters, A., Nehls, T., Schonsky, H., Wessolek, G., 2014. Separating precipitation and evapotranspiration from noise - a new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences 18(3): 1189-1198.

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100(2): 81-92.

Roth, D., Günther, R., Knoblauch, S., Michel, H., 2005. Wasserhaushaltsgrößen von Kulturpflanzen unter Feldbedingungen, In: Landwirtschaft und Landschaftspflege in Thüringen, Thüringer Landesanstalt für Landwirtschaft, (Ed.). Schriftenreihe Heft 1  Jena, pp. 159.

Sabziparvar, A.A., Tabari, H., 2010. Regional estimation of reference evapotranspiration in arid and semiarid regions. Journal of Irrigation and Drainage Engineering ASCE 136(10): 724-731.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36(8): 1627-1639.

Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., Wollschläger, U., 2013. Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences 19: 543-552.

Shi, T., Guan, D., Wu, J., Wang, A., Jin, C., Han, S., 2008. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. Journal of Geophysical Research 113: D19116.

Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A.V., Müller, D., 2017. Production potential in the "bread baskets" of Eastern Europe and Central Asia. Global Food Security 14: 38-53.

von Unold, G., Fank, J., 2008. Modular design of field lysimeters for specific application needs. Water, Air, & Soil Pollution: Focus 8(2): 233-242.

Wegehenkel, M., Zhang, Y., Zenker, T., Diestel, H., 2008. The use of lysimeter data for the test of two soil-water balance models: A case study. Journal of Plant Nutrition and Soil Science 171(5): 762-776.

Wegehenkel, M., Gerke, H.H., 2013. Comparison or real evapotranspiration measured by weighing lysimeters with simulations based on the Penman formula and a crop growth model. Journal of Hydrology and Hydromechanics 61(2): 161-172.

Wever, L.A., Flanagan, L.B., Carlson, P.J., 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology 112(1): 31-49.

Wohlfahrt, G., Ischick, C., Thalinger, B., Hörtnagl, L., Obojes, N., Hammerle, A., 2010. Insights from independent evapotranspiration estimates for closing the energy balance: A grassland study. Vadose Zone Journal 9(4): 1025-1033.

Xiao, H., Meissner, R., Seeger, J., Rupp, H., Borg, H., 2009. Testing the precision of a weighable gravitation lysimeter. Journal of Plant Nutrition and Soil Science 172(2): 194-200.

Yamazaki, T., Yabuki, H., Ishii, Y., Ohta, T., Ohata, T., 2004. Water and energy exchanges at forests and a grassland in eastern Siberia evaluated using a one-dimensional land surface model. Journal of Hydrometeorology 5: 504-515.

Yang, F., Zhang, Q., Wang, R., Zhou, J., 2014. Evapotranspiration measurement and crop coefficient estimation over a spring wheat farmland ecosystem in the Loess Plateau. PLOS One 9: e100031.



Eurasian Journal of Soil Science