Eurasian Journal of Soil Science

Volume 8, Issue 3, Jun 2019, Pages 189-195
DOI: 10.18393/ejss.552563
Stable URL: http://ejss.fess.org/10.18393/ejss.552563
Copyright © 2019 The authors and Federation of Eurasian Soil Science Societies



Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak

X

Article first published online: 11 Apr 2019 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 134 | 799

Yertayeva,Z., Kızılkaya,R., Kaldybayev,S., Seitkali,N., Abdraimova,N., Zhamangarayeva,A., 2019. Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak. Eurasian J Soil Sci 8(3):189-195. DOI : 10.18393/ejss.552563
Yertayeva,Z.,Kızılkaya,R.Kaldybayev,S.Seitkali,N.Abdraimova,N.,& Zhamangarayeva,A. Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak Eurasian Journal of Soil Science, 8(3):189-195. DOI : 10.18393/ejss.552563
Yertayeva,Z.,Kızılkaya,R.Kaldybayev,S.Seitkali,N.Abdraimova,N., and ,Zhamangarayeva,A."Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak" Eurasian Journal of Soil Science, 8.3 (2019):189-195. DOI : 10.18393/ejss.552563
Yertayeva,Z.,Kızılkaya,R.Kaldybayev,S.Seitkali,N.Abdraimova,N., and ,Zhamangarayeva,A. "Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak" Eurasian Journal of Soil Science,8(Jun 2019):189-195 DOI : 10.18393/ejss.552563
Z,Yertayeva.R,Kızılkaya.S,Kaldybayev.N,Seitkali.N,Abdraimova.A,Zhamangarayeva "Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak" Eurasian J. Soil Sci, vol.8, no.3, pp.189-195 (Jun 2019), DOI : 10.18393/ejss.552563
Yertayeva,Zhainagul ;Kızılkaya,Rıdvan ;Kaldybayev,Sagynbay ;Seitkali,Nurzikhan ;Abdraimova,Nurgul ;Zhamangarayeva,Aigul Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak. Eurasian Journal of Soil Science, (2019),8.3:189-195. DOI : 10.18393/ejss.552563

How to cite

Yertayeva, Z., Kızılkaya, R., Kaldybayev, S., Seitkali, N., Abdraimova, N., Zhamangarayeva, A., 2019. Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak. Eurasian J. Soil Sci. 8(3): 189-195. DOI : 10.18393/ejss.552563

Author information

Zhainagul Yertayeva , Kazakh National Agrarian University, Almaty, Kazakhstan Almaty, Kazakhstan
Rıdvan Kızılkaya , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Turkey
Sagynbay Kaldybayev , Kazakh National Agrarian University, Almaty, Kazakhstan
Nurzikhan Seitkali , Kazakh National Agrarian University, Almaty, Kazakhstan
Nurgul Abdraimova , Kazakh National Agrarian University, Almaty, Kazakhstan
Aigul Zhamangarayeva , Kazakh National Agrarian University, Almaty, Kazakhstan

Publication information

Article first published online : 11 Apr 2019
Manuscript Accepted : 10 Apr 2019
Manuscript Received: 16 Jun 2018
DOI: 10.18393/ejss.552563
Stable URL: http://ejss.fesss.org/10.18393/ejss.552563

Abstract

Land use and amelioration practices are considered as main drivers in change of biological soil quality indicators in meadow Solonchaks. To gain insight into the impact of amelioration with alfalfa (Medicago sativa L.) cultivation on the underlying soil microbiological and biochemical properties, the objective of this study was to determine the effect of alfalfa (Medicago sativa L.) cultivation on biological soil quality indicators such as microorganisms counts, microbial biomass, basal soil respiration and enzyme activities (dehydrogenase, catalase, -glucosidase, protease, urease, alkaline phosphatase and arylsulphatase) in meadow Solonchak. Post-amelioration with alfalfa cultivation influenced the soil microbiological and biochemical properties and increased soil organic matter content and improved biological soil quality indicators. The results of this study may contribute to future researches for soil microbial communities in different type of amelioration practices in soil quality and sustainable productivity meadow Solonchaks.

Keywords

Amelioration, microorganisms, saline soil, soil quality.

Corresponding author

References

Amador, J.A., Glucksman, A.M., Lyons, J.B., Görres, J.H., 1997. Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science 162(11): 808-825.

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties, Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Anderson, J.P.E., Domsch, K.H., 1978. A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10(3): 215 – 221.

Aşkın, T., Kızılkaya, R., 2006. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. European Journal of Soil Biology 42(4): 230-237.

Bandick, A.K., Dick, R.P., 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry 31(11): 1471–1479.

Beck, T.H., 1971. Die Messung derkKatalasen aktivität Von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 130(1): 68-81.

Beketova, A.K., Kaldybaev, S., Yertayeva, Z., 2017. Changes in the Composition and Properties of Meadow Solonchaks of the Ili Alatau Foothill Plain in the Republic of Kazakhstan during a Long Postmeliorative Period.  OnLine Journal of Biological Sciences 17(4): 290.298.

Benefield, C.B., Howard P.J.A., Howard, D.M., 1977. The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry 9(1): 67-70.

Bolton, Jr.,H., Elliott, L.F., Papendick, R.I., Bezdicek, D.F., 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry 17(3): 297-302.

Bremner, J.M., Mulvaney, R.L., 1978. Urease activity in soils. In: Soil enzymes, Burns, R.G. (Ed.). Academic Press, New York, USA.pp.149-196.

Dick, R.P., 1994. Soil enzyme activity as an indicator of soil quality. In: Defining soil quality for a sustainable environment. Doran, J.W., Coleman, D.C., Stewart, B.A., Bezdicek, D.F. (Eds.). SSSA Special Publication No. 35. Madison, Wisconsin, USA. pp. 107–124.

Doran, J.W., Parkin, T.B., 1994. Defining and assessing soil quality. In: Defining soil quality for a sustainable environment. Doran, J.W., Coleman, D.C., Stewart, B.A., Bezdicek, D.F. (Eds.). SSSA Special Publication No. 35. Madison, Wisconsin, USA. pp. 3–21.

Eivazi, F., Bayan, M., Schmidt, K., 2003. Select soil enzyme activities in the historic Sanborn Field as affected by longterm cropping systems. Communications in Soil Science and Plant Analysis 34(15/16): 2259–2275.

Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20(5): 601-606.

FAO, 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Chapter II Regional assessment of soil changes in Europe and Eurasia. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. 363p. http://www.fao.org/3/a-bc600e.pdf

Grattan, S.R., Grieve, C.M., 1999. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78(1-4): 127–157.

Hoffmann, G.G., Teicher, K., 1961. Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 95(1): 55–63.

Jordan, D., Kremer, R.J., Bergfield, W.A., Kim, K.Y., Cacnio, V.N., 1995. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biology and Fertility of Soils 19(4):297–302.

Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E., 1997. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal 61(1): 4–10.

Kazemi, K., Eskandari, H., 2011. Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. African Journal of Biotechnology 10(77): 17789-17792

Kızılkaya, R., 2005. The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil. Ecological Engineering 25(4): 322-331.

Kızılkaya, R., Aşkın, T., Bayraklı, B., Sağlam, M., 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40(2): 95-102.

Kızılkaya, R., Bayraklı, B., 2005. Effects of N-enriched sewage sludge on soil enzyme activities. Applied Soil Ecology 30(3): 192-202.

Kızılkaya, R., Hepşen, Ş., 2007. Microbiological properties in earthworm Lumbricus terrestris L. cast and surrounding soil amended with various organic wastes. Communication in Soil Science and Plant Analysis 38(19-20): 2861-2876.

Ladd, J.N., Butler, J.H.A., 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry 4(1): 19-39.

Lax, A., Diaz, E., Castillo, V., Albaladejo, J., 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Research and Rehabilitation 8(1): 9–17.

Leirós, M.C., Trasar-Cepeda, C., Seoane, S., Gil-Sotres, F., 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate–humid zone (Galicia, NW Spain): general parameters. Soil Biology and Biochemistry 32(6): 733-745.

Mahdy, A.M., 2011. Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil and Water Research 6(4): 205–216.

Martin, J.P., 2003. Use of acid, rose Bengal, and streptomycin in the plate method for estimating soil fungi. Soil Science 69(3): 215–232.

Masciandaro, G., Ceccanti, B., Ronchi, V., Bauer, C., 2000. Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biology and Fertility of Soils 32(6): 479-483.

Matsumoto, S., Zhao, Q., Yang, J., Zhu, S., Li, L., 1994. Salinisation and its environmental hazard on sustainable agriculture in East Asia and its neighbouring regions. 15th World Congress of Soil Science, Mexico, pp.236–255.

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., 2003. Microbial diversity and soil functions. European Journal of Soil Science 54(4): 655–670

Nannipieri, P., Ceccanti, B., Grego, S., 1990. Ecological significance of the soil biological activity in soil. In: Soil Biochemistry. Bollag, J.M., Stotzky, G. (Eds.). Marcel Dekker, New York, USA. pp. 415-471.

Oad, F.C., Samo, M.A., Soomro, A., Oad, D.L., Oad, N.L., Siyal, A.G., 2002. Amelioration of salt affected soils. Journal of Applied Sciences 2(1): 1-9.

Obbard, J.P., 2001. Measurement of dehydrogenase activity using 2-p-iodophenyl-3-p-nitrophenyl- 5-phenyltetrazolium chloride (INT) in the presence of copper. Biology and Fertility of Soils 33(4): 328-330.

Okur, N., Altındişli, A., Çengel, M., Göçmez, S., Kayıkçıoğlu, H.H., 2009. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agriculture and Forestry 33: 413-423.

Pepper, I.L., Gerba, C.P., Brendecke, J.W., 1995. Environmental microbiology: a laboratory manual. Academic Press, New York, USA. 197p.

Perucci, P., 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils 14(1): 54-60.

Qadir, M., Schubert, S., Ghafoor, A., Murtaza, G., 2001. Amelioration strategies for sodic soils: A review. Land Degradation and Development 12(4): 357–386.

Rossel, D., Tarradellas, J., 1991. Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environmental Toxicology 6(1): 17-33.

Rowell, D.L. 1996. Soil Science: Methods and Applications. Longman, London, UK. 368p.

Sumner, M.E., 1993. Sodic soils: New perspectives. Aus­tralian Journal of Soil Research 31(6): 683–750.

Tabatabai,  M.A., 1994. Soil enzymes. In: Methods of soil analysis. Part 2- Microbiological and biochemical properties.  Mickelson, S.H., Bighan, J.M. (Eds). (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 775-826.

Tabatabai, M.A., Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1(4): 301-307.

Tabatabai, M.A., Bremner, J.M., 1970. Arylsulphatase activity of soils. Soil Science Society of America Journal 34(2): 225-229.

Tiedje, J.M., Asuming-Brempong, S., Nüsslein, K., Marsh, T.L., Flynn, S.J., 1999. Opening the black box of soil microbial diversity. Applied Soil Ecology 13(2): 109–122.

Turner, B.L., Hopkins, D.W., Haygarth, P.M., Ostle, N., 2002. b-Glucosidase activity in pasture soils. Applied Soil Ecology 20(2): 157-162.

Umali, D., 1993. Irrigation-induced salinity. World Bank Tech. Paper No. 215, Washington, USA. 79p. Available at [access date : 16.06.2018]: http://documents.worldbank.org/curated/en/486611468766779740/pdf/multi-page.pdf

Yertayeva, Z., Kaldybaev, S., Beketova, A., 2018. The scientific basis of changes in the composition and properties of meadow saline soil of the foothill plains of the Ili Alatau during a long postmeliorative period. Ecology, Environment and Conservation 24(2): 715-720.

Abstract

Land use and amelioration practices are considered as main drivers in change of biological soil quality indicators in meadow Solonchaks. To gain insight into the impact of amelioration with alfalfa (Medicago sativa L.) cultivation on the underlying soil microbiological and biochemical properties, the objective of this study was to determine the effect of alfalfa (Medicago sativa L.) cultivation on biological soil quality indicators such as microorganisms counts, microbial biomass, basal soil respiration and enzyme activities (dehydrogenase, catalase, b-glucosidase, protease, urease, alkaline phosphatase and arylsulphatase) in meadow Solonchak. Post-amelioration with alfalfa cultivation influenced the soil microbiological and biochemical properties and increased soil organic matter content and improved biological soil quality indicators. The results of this study may contribute to future researches for soil microbial communities in different type of amelioration practices in soil quality and sustainable productivity meadow Solonchaks.

Keywords: Amelioration, microorganisms, saline soil, soil quality.

References

Amador, J.A., Glucksman, A.M., Lyons, J.B., Görres, J.H., 1997. Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science 162(11): 808-825.

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties, Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Anderson, J.P.E., Domsch, K.H., 1978. A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10(3): 215 – 221.

Aşkın, T., Kızılkaya, R., 2006. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. European Journal of Soil Biology 42(4): 230-237.

Bandick, A.K., Dick, R.P., 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry 31(11): 1471–1479.

Beck, T.H., 1971. Die Messung derkKatalasen aktivität Von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 130(1): 68-81.

Beketova, A.K., Kaldybaev, S., Yertayeva, Z., 2017. Changes in the Composition and Properties of Meadow Solonchaks of the Ili Alatau Foothill Plain in the Republic of Kazakhstan during a Long Postmeliorative Period.  OnLine Journal of Biological Sciences 17(4): 290.298.

Benefield, C.B., Howard P.J.A., Howard, D.M., 1977. The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry 9(1): 67-70.

Bolton, Jr.,H., Elliott, L.F., Papendick, R.I., Bezdicek, D.F., 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry 17(3): 297-302.

Bremner, J.M., Mulvaney, R.L., 1978. Urease activity in soils. In: Soil enzymes, Burns, R.G. (Ed.). Academic Press, New York, USA.pp.149-196.

Dick, R.P., 1994. Soil enzyme activity as an indicator of soil quality. In: Defining soil quality for a sustainable environment. Doran, J.W., Coleman, D.C., Stewart, B.A., Bezdicek, D.F. (Eds.). SSSA Special Publication No. 35. Madison, Wisconsin, USA. pp. 107–124.

Doran, J.W., Parkin, T.B., 1994. Defining and assessing soil quality. In: Defining soil quality for a sustainable environment. Doran, J.W., Coleman, D.C., Stewart, B.A., Bezdicek, D.F. (Eds.). SSSA Special Publication No. 35. Madison, Wisconsin, USA. pp. 3–21.

Eivazi, F., Bayan, M., Schmidt, K., 2003. Select soil enzyme activities in the historic Sanborn Field as affected by longterm cropping systems. Communications in Soil Science and Plant Analysis 34(15/16): 2259–2275.

Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20(5): 601-606.

FAO, 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Chapter II Regional assessment of soil changes in Europe and Eurasia. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. 363p. http://www.fao.org/3/a-bc600e.pdf

Grattan, S.R., Grieve, C.M., 1999. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78(1-4): 127–157.

Hoffmann, G.G., Teicher, K., 1961. Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 95(1): 55–63.

Jordan, D., Kremer, R.J., Bergfield, W.A., Kim, K.Y., Cacnio, V.N., 1995. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biology and Fertility of Soils 19(4):297–302.

Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E., 1997. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal 61(1): 4–10.

Kazemi, K., Eskandari, H., 2011. Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. African Journal of Biotechnology 10(77): 17789-17792

Kızılkaya, R., 2005. The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil. Ecological Engineering 25(4): 322-331.

Kızılkaya, R., Aşkın, T., Bayraklı, B., Sağlam, M., 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40(2): 95-102.

Kızılkaya, R., Bayraklı, B., 2005. Effects of N-enriched sewage sludge on soil enzyme activities. Applied Soil Ecology 30(3): 192-202.

Kızılkaya, R., Hepşen, Ş., 2007. Microbiological properties in earthworm Lumbricus terrestris L. cast and surrounding soil amended with various organic wastes. Communication in Soil Science and Plant Analysis 38(19-20): 2861-2876.

Ladd, J.N., Butler, J.H.A., 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry 4(1): 19-39.

Lax, A., Diaz, E., Castillo, V., Albaladejo, J., 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Research and Rehabilitation 8(1): 9–17.

Leirós, M.C., Trasar-Cepeda, C., Seoane, S., Gil-Sotres, F., 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate–humid zone (Galicia, NW Spain): general parameters. Soil Biology and Biochemistry 32(6): 733-745.

Mahdy, A.M., 2011. Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil and Water Research 6(4): 205–216.

Martin, J.P., 2003. Use of acid, rose Bengal, and streptomycin in the plate method for estimating soil fungi. Soil Science 69(3): 215–232.

Masciandaro, G., Ceccanti, B., Ronchi, V., Bauer, C., 2000. Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biology and Fertility of Soils 32(6): 479-483.

Matsumoto, S., Zhao, Q., Yang, J., Zhu, S., Li, L., 1994. Salinisation and its environmental hazard on sustainable agriculture in East Asia and its neighbouring regions. 15th World Congress of Soil Science, Mexico, pp.236–255.

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., 2003. Microbial diversity and soil functions. European Journal of Soil Science 54(4): 655–670

Nannipieri, P., Ceccanti, B., Grego, S., 1990. Ecological significance of the soil biological activity in soil. In: Soil Biochemistry. Bollag, J.M., Stotzky, G. (Eds.). Marcel Dekker, New York, USA. pp. 415-471.

Oad, F.C., Samo, M.A., Soomro, A., Oad, D.L., Oad, N.L., Siyal, A.G., 2002. Amelioration of salt affected soils. Journal of Applied Sciences 2(1): 1-9.

Obbard, J.P., 2001. Measurement of dehydrogenase activity using 2-p-iodophenyl-3-p-nitrophenyl- 5-phenyltetrazolium chloride (INT) in the presence of copper. Biology and Fertility of Soils 33(4): 328-330.

Okur, N., Altındişli, A., Çengel, M., Göçmez, S., Kayıkçıoğlu, H.H., 2009. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agriculture and Forestry 33: 413-423.

Pepper, I.L., Gerba, C.P., Brendecke, J.W., 1995. Environmental microbiology: a laboratory manual. Academic Press, New York, USA. 197p.

Perucci, P., 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils 14(1): 54-60.

Qadir, M., Schubert, S., Ghafoor, A., Murtaza, G., 2001. Amelioration strategies for sodic soils: A review. Land Degradation and Development 12(4): 357–386.

Rossel, D., Tarradellas, J., 1991. Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environmental Toxicology 6(1): 17-33.

Rowell, D.L. 1996. Soil Science: Methods and Applications. Longman, London, UK. 368p.

Sumner, M.E., 1993. Sodic soils: New perspectives. Aus­tralian Journal of Soil Research 31(6): 683–750.

Tabatabai,  M.A., 1994. Soil enzymes. In: Methods of soil analysis. Part 2- Microbiological and biochemical properties.  Mickelson, S.H., Bighan, J.M. (Eds). (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 775-826.

Tabatabai, M.A., Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1(4): 301-307.

Tabatabai, M.A., Bremner, J.M., 1970. Arylsulphatase activity of soils. Soil Science Society of America Journal 34(2): 225-229.

Tiedje, J.M., Asuming-Brempong, S., Nüsslein, K., Marsh, T.L., Flynn, S.J., 1999. Opening the black box of soil microbial diversity. Applied Soil Ecology 13(2): 109–122.

Turner, B.L., Hopkins, D.W., Haygarth, P.M., Ostle, N., 2002. b-Glucosidase activity in pasture soils. Applied Soil Ecology 20(2): 157-162.

Umali, D., 1993. Irrigation-induced salinity. World Bank Tech. Paper No. 215, Washington, USA. 79p. Available at [access date : 16.06.2018]: http://documents.worldbank.org/curated/en/486611468766779740/pdf/multi-page.pdf

Yertayeva, Z., Kaldybaev, S., Beketova, A., 2018. The scientific basis of changes in the composition and properties of meadow saline soil of the foothill plains of the Ili Alatau during a long postmeliorative period. Ecology, Environment and Conservation 24(2): 715-720.



Eurasian Journal of Soil Science