Eurasian Journal of Soil Science

Volume 8, Issue 1, Jan 2019, Pages 44 - 53
DOI: 10.18393/ejss.492466
Stable URL: http://ejss.fess.org/10.18393/ejss.492466
Copyright © 2019 The authors and Federation of Eurasian Soil Science Societies



Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan

X

Article first published online: 05 Dec 2018 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 81 | 726

Sulieman,M., AlGarni,A., 2019. Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan. Eurasian J Soil Sci 8(1):44 - 53. DOI : 10.18393/ejss.492466
Sulieman,M.,,& AlGarni,A. Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan Eurasian Journal of Soil Science, 8(1):44 - 53. DOI : 10.18393/ejss.492466
Sulieman,M.,, and ,AlGarni,A."Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan" Eurasian Journal of Soil Science, 8.1 (2019):44 - 53. DOI : 10.18393/ejss.492466
Sulieman,M.,, and ,AlGarni,A. "Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan" Eurasian Journal of Soil Science,8(Jan 2019):44 - 53 DOI : 10.18393/ejss.492466
M,Sulieman.A,AlGarni "Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan" Eurasian J. Soil Sci, vol.8, no.1, pp.44 - 53 (Jan 2019), DOI : 10.18393/ejss.492466
Sulieman,Magboul M. ;AlGarni,Abdallah M. Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan. Eurasian Journal of Soil Science, (2019),8.1:44 - 53. DOI : 10.18393/ejss.492466

How to cite

Sulieman, M., AlGarni, A., 2019. Soil organic carbon mapping and prediction based on depth intervals using kriging technique: A case of study in alluvial soil from Sudan. Eurasian J. Soil Sci. 8(1): 44 - 53. DOI : 10.18393/ejss.492466

Author information

Magboul M. Sulieman , Department of Soil and Environment Sciences, Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
Abdallah M. AlGarni , Institute of Environmental Studies, University of Khartoum, Khartoum, Sudan

Publication information

Article first published online : 05 Dec 2018
Manuscript Accepted : 27 Nov 2018
Manuscript Received: 19 Apr 2018
DOI: 10.18393/ejss.492466
Stable URL: http://ejss.fesss.org/10.18393/ejss.492466

Abstract

Soil organic carbon plays a vital role in the arid and semiarid regions. This study aimed to predict and map soil organic carbon content at soil depth intervals of 0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m in alluvium soils along Blue Nile and River Nile, Sudan. Ordinary kriging (OK) technique was used as a geostatistical tool and applied to model the spatial variability of soil organic carbon in the study area. A total of 38 soil profiles were excavated in the study area and 152 samples from the four depths intervals were collected for determining organic carbon content. Results revealed that, the spatial autocorrelation for the different soil layers was moderate to weak with a nugget to sill ratios ranging from 0.21 to 0.86 suggesting their controlled by both intrinsic and extrinsic factors. The root mean square error standardized (RMSE) of the predictions ranging from 0.79 to 0.83 indicating that the model which generated by ordinary kriging was correctly estimating the variability of soil organic carbon in the study area.

Keywords

Alluvial soil, spatial autocorrelation, semivariogram, soil organic carbon, Cokriging, soil depth in

Corresponding author

References

Acín-Carrera, M., José Marques, M., Carral, P., Álvarez, A.M., López, C., Martín-López, B., González, J.A., 2013. Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use and Management 29(4): 547-556.

Beguería, S., Angulo-Martínez, M., Gaspar, L., Navas, A., 2015. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain. Geoderma 245-246: 21-30.

Behrens, T., Zhu, A.-X., Schmidt, K., Scholten, T., 2010. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155(3-4): 175-185.

Bertalan, L., Tóth, C. A., Szabó, G., Nagy, G., Kuda, F., Szabo, S., 2016. Confirmation of a theory: reconstruction of an alluvial plain development in a flume experiment. Erdkunde 70(3): 271-285.

Bienes, R., Marques, M.J., Sastre, B., García-Díaz, A., Ruiz-Colmenero, M., 2016. Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties. Geoderma 273: 106–114.

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91(1): 27-45.

Bogunovic, I., Pereira, P., Brevik, E.C., 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment 584-585: 535-545.

Bounouara, Z., Chevallier, T., Balesdent, J., Toucet, J., Sbih, M., Bernoux, M., Belaissaoui, N., Bouneb, O., Bensaid, R., 2017. Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in North Africa (Skikda, Algeria). Journal of Arid Environments 141: 25-33.

Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D. L., Novak, J. M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58(5): 1501-1511.

Camilli, B., Dell’Abate, M.T., Mocali, S., Fabiani, A., Dazzi, C., 2016. Evolution of organic carbon pools and microbial diversity in hyperarid anthropogenic soils. Journal of Arid Environments 124: 318-331.

Cotching, W.E., Oliver, G., Downie, M., Corkrey, R., Doyle, R. B., 2014. Land use and management influences on surface soil organic carbon in Tasmania. Soil Research 51(8): 615-630.

Chabala, L.M., Mulolwa, A., Lungu, O., 2017. Application of ordinary kriging in mapping soil organic carbon in Zambia. Pedosphere 27(2): 338-343.

Chahouki, Z., Chahouki, A.Z., Ahvazi, L.K., 2011. Comparing geostatistical approaches for mapping soil properties in Poshtkouh rangelands of Yazd Province, Iran. International Journal of Plant Research 24(1): 77-88.

Chen, C., Hu, K., Li, H., Yun, A., Li, B., 2015. Three-dimensional mapping of soil organic carbon by combining kriging method with profile depth function. PloS one 10(6): e0129038

Chen, C., Liu, W., Jiang, X., Wu, J., 2017. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 299:13–24.

Dengiz, O., 2010. Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the south-east Anatolia region of Turkey. Tarim Bilimleri Dergisi 16(3): 205-212.‏

Dengiz, O., Sağlam, M., Türkmen, F., 2015. Effects of soil types and land use-land cover on soil organic carbon density at Madendere watershed. Eurasian Journal of Soil Science 4(2): 82-87.‏

Elfaki, J.T., Sulieman, M.M., Nour, A.M., Ali, M.E., 2015. Short-Term changes in ınorganic nitrogen concentrations during storage at different temperatures of three different soils of the Nile River terraces, North of Sudan.‏ Advances in Environmental Biology 9(24): 397-402.

Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 88(1): 6-13.

Fu, W., Jiang, P., Zhao, K., Zhou, G., Li, Y., Wu, J., Du, H., 2014. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. Journal of Soils and Sediments 14(2): 320-329.

 

García-Díaz, A., Allas, R.B., Gristina, L., Cerdà, A., Pereira, P., Novara, A., 2016. Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271: 144–149.

Gómez, J.A., Guzmán, M.G., Giráldez, J.V., Fereres, E., 2009. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research 106: 137–144.

Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils 27(4): 315-334.

Grunwald, S., 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152(3-4): 195–207.

Harrison, M.N., Jackson, J.K., 1958. Ecological classification of the vegetation of the Sudan. Ecological classification of the vegetation of the Sudan, Ministry of Agriculture and Forests, Khartoum, Sudan.

Hartemink, A.E., Minasny, B., 2014. Towards digital soil morphometrics. Geoderma 230-231: 305-317.

He, Y., Chen, D., Li, B.G., Huang, Y.F., Hu, K.L., Li, Y., Willett, I.R., 2009. Sequential indicator simulation and indicator kriging estimation of 3-dimensional soil textures. Australian Journal of Soil Research 47(6): 622-631.

Jin, K., Cornelis, W.M., Gabriels, D., Baert, M., Wu, H.J., Schiettecatte, W., Cai, D.X., De Neve, S., Jin, J.Y., Hartmann, R., Hofman, G., 2009. Residue cover and rainfall intensity effects on runoff soil organic carbon losses. Catena 78(1): 81–86.

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P.C., Boivin, P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma 302: 14–21.

Johnston, K., Ver Hoef, J. M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS geostatistical analyst (Vol. 380). ESRI Press, Redlands.

Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà, A., 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment 610-611: 997–1009.

Kempen, B., Brus, D.J., Stoorvogel, J.J., 2011. Three-dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma 162(1-2): 107-123.

Keshavarzi, A., Tuffour, H., Bagherzadeh, A., Duraisamy, V., 2018. Spatial and Fractal Characterization of Soil Properties across Soil Depth in an Agricultural Field, Northeast Iran. Eurasian Journal of Soil Science 7(2): 35–45.

Kılıç, K., Özgöz, E., Akbaş, F., 2004. Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey. Soil and Tillage Research 76(1): 1-11.

Lado, M., Paz, A., Ben-Hur, M., 2004. Organic matter and aggregate-size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal 68(1): 234-242.

Leuangthong, O., McLennan, J.A., Deutsch, C.V., 2004. Minimum acceptance criteria for geostatistical realizations. Natural Resources Research 13(3): 131-141.

Liu, Z.P., Shao, M.A., Wang, Y.Q., 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197-198: 67-78.

Martín, J.R., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Corbí, J.G., Boluda, R., 2016. Assessment of the soil organic carbon stock in Spain. Geoderma 264: 117-125.

Ministry of Energy and Mines, 1981. Geological map of Sudan, scale: 1: 2,000,000, Geological and Mineral Resources Department, Sudan.

Mlih, R., Bol, R., Amelung, W., Brahim, N., 2016. Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: a mini-review. Journal of Arid Land 8(1): 77–92.

Nasri, B., Fouché, O., Torri, D., 2015. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131: 99–108.

Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, A.L. Page, R.H. Miller, D.R. Keeney (Eds.), 2nd Ed. Agronomy Monograph No. 9, ASA-SSSA, Madison, Wisconsin, USA. pp.539–573.

Peel, M. C., Finlayson, B. L., McMahon, T. A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644.

Pereira, P., Brevik, E., Trevisani, S., 2018. Mapping the environment. Science of the Total Environment 610–611: 17–23.

Regalado, C.M., Ritter, A., 2006. Geostatistical tools for characterizing the spatial variability of soil water repellency parameters in a laurel forest watershed. Soil Science Society of America Journal 70(4): 1071-1081.

Reza, S.K., Sarkar, D., Baruah, U., Das, T.H., 2010. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura. Agropedology 20(1): 38-48.

Rodrigo Comino, J., Bogunovic, I., Mohajerani, H., Pereira, P., Cerdà, A., Ruiz-Sinoga, J., Ries, J., 2017. The impact of vineyard abandonment on soil properties and hydrological processes. Vadose Zone Journal 16(12).

Rosemary, F., Indraratne, S. P., Weerasooriya, R., Mishra, U., 2017. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena 150: 53-61.

Scharlemann, J.P., Tanner, E.V., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5(1): 81-91.

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., 2012. Field book for describing and sampling soils. National Soil Survey Center, Natural Resources Conservation Service, U.S. Department of Agriculture, Books Express Publishing, 298p.

Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U., Bagherzadeh, A., Mousavi, S.R., Karimi, S., 2017. Modeling soil cation exchange capacity using soil parameters: assessing the heuristic models. Computer and Electronics in Agriculture 135: 242–251.

Smith, J.O., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J., Ewert, F., 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology 11(12): 2141-2152.

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC.

Steel, R., Torrie, G.D., 1980. Principles and Procedures of Statistics: A Biometrical Approach. McGrow-Hill: Sustainable Development. 663p.

Sulieman, M.M., Ibrahim, I.S., Elfaki, J., 2015. Evaluation of Land Suitability for Agriculture under Irrigation at Khartoum North, Sudan. International Journal of Scientific and Research Publications.  5(9).

Suliman, M.M., Ibrahim, I.S., Elfaki, J., 2015. Land suitability characterization for crop and fruit production of some river Nile Terraces, Khartoum North, Sudan. International Journal of Scientific and Research Publications 5(10).

Sulieman, M.M., Ibrahim, I.S., Elfaki, J.T., 2016. Genesis and classification of some soils of the River Nile terraces: a case study of Khartoum North, Sudan. Journal of Geoscience and Environment Protection 4: 1-16.

Sulieman, M., Saeed, I., Hassaballa, A., Rodrigo-Comino, J., 2018. Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. Catena 167: 327-339.‏

Tang, X., Xia, M., Pérez-Cruzado, C., Guan, F., Fan, S., 2017. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports 7: 42640.

Van der Kevie, W., 1976. Climatic zones in the Sudan. Soil Survey Department, Wad Medani, Sudan

Wang, Y., Zhang, X., Huang, C., 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150(1-2): 141-149.

Whaiteman, A. J., 1971. The geology of the Sudan Republic. Oxford: Calorendon Perss.

Yang, Y., Zhu, J., Tong, X., Wang, D., 2009. The spatial pattern characteristics of soil nutrients at the field scale. In International Conference on Computer and Computing Technologies in Agriculture II., Volume 1. CCTA 2008. IFIP Advances in Information and Communication Technology, vol 293. Li, D., Zhao, C. (Eds.). Springer, Boston, MA., USA. pp. 125-134.

Zeraatpisheh, M., Ayoubi, S., Jafari, A., Finke, P., 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology 285: 186–204.

Abstract

Soil organic carbon plays a vital role in the arid and semiarid regions. This study aimed to predict and map soil organic carbon content at soil depth intervals of 0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m in alluvium soils along Blue Nile and River Nile, Sudan. Ordinary kriging (OK) technique was used as a geostatistical tool and applied to model the spatial variability of soil organic carbon in the study area. A total of 38 soil profiles were excavated in the study area and 152 samples from the four depths intervals were collected for determining organic carbon content. Results revealed that, the spatial autocorrelation for the different soil layers was moderate to weak with a nugget to sill ratios ranging from 0.21 to 0.86 suggesting their controlled by both intrinsic and extrinsic factors. The root mean square error standardized (RMSE) of the predictions ranging from 0.79 to 0.83 indicating that the model which generated by ordinary kriging was correctly estimating the variability of soil organic carbon in the study area.

Keywords: Alluvial soil, spatial autocorrelation, semivariogram, soil organic carbon, Cokriging, soil depth intervals.

References

Acín-Carrera, M., José Marques, M., Carral, P., Álvarez, A.M., López, C., Martín-López, B., González, J.A., 2013. Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use and Management 29(4): 547-556.

Beguería, S., Angulo-Martínez, M., Gaspar, L., Navas, A., 2015. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain. Geoderma 245-246: 21-30.

Behrens, T., Zhu, A.-X., Schmidt, K., Scholten, T., 2010. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155(3-4): 175-185.

Bertalan, L., Tóth, C. A., Szabó, G., Nagy, G., Kuda, F., Szabo, S., 2016. Confirmation of a theory: reconstruction of an alluvial plain development in a flume experiment. Erdkunde 70(3): 271-285.

Bienes, R., Marques, M.J., Sastre, B., García-Díaz, A., Ruiz-Colmenero, M., 2016. Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties. Geoderma 273: 106–114.

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91(1): 27-45.

Bogunovic, I., Pereira, P., Brevik, E.C., 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment 584-585: 535-545.

Bounouara, Z., Chevallier, T., Balesdent, J., Toucet, J., Sbih, M., Bernoux, M., Belaissaoui, N., Bouneb, O., Bensaid, R., 2017. Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in North Africa (Skikda, Algeria). Journal of Arid Environments 141: 25-33.

Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D. L., Novak, J. M., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58(5): 1501-1511.

Camilli, B., Dell’Abate, M.T., Mocali, S., Fabiani, A., Dazzi, C., 2016. Evolution of organic carbon pools and microbial diversity in hyperarid anthropogenic soils. Journal of Arid Environments 124: 318-331.

Cotching, W.E., Oliver, G., Downie, M., Corkrey, R., Doyle, R. B., 2014. Land use and management influences on surface soil organic carbon in Tasmania. Soil Research 51(8): 615-630.

Chabala, L.M., Mulolwa, A., Lungu, O., 2017. Application of ordinary kriging in mapping soil organic carbon in Zambia. Pedosphere 27(2): 338-343.

Chahouki, Z., Chahouki, A.Z., Ahvazi, L.K., 2011. Comparing geostatistical approaches for mapping soil properties in Poshtkouh rangelands of Yazd Province, Iran. International Journal of Plant Research 24(1): 77-88.

Chen, C., Hu, K., Li, H., Yun, A., Li, B., 2015. Three-dimensional mapping of soil organic carbon by combining kriging method with profile depth function. PloS one 10(6): e0129038

Chen, C., Liu, W., Jiang, X., Wu, J., 2017. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 299:13–24.

Dengiz, O., 2010. Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the south-east Anatolia region of Turkey. Tarim Bilimleri Dergisi 16(3): 205-212.‏

Dengiz, O., Sağlam, M., Türkmen, F., 2015. Effects of soil types and land use-land cover on soil organic carbon density at Madendere watershed. Eurasian Journal of Soil Science 4(2): 82-87.‏

Elfaki, J.T., Sulieman, M.M., Nour, A.M., Ali, M.E., 2015. Short-Term changes in ınorganic nitrogen concentrations during storage at different temperatures of three different soils of the Nile River terraces, North of Sudan.‏ Advances in Environmental Biology 9(24): 397-402.

Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 88(1): 6-13.

Fu, W., Jiang, P., Zhao, K., Zhou, G., Li, Y., Wu, J., Du, H., 2014. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. Journal of Soils and Sediments 14(2): 320-329.

 

García-Díaz, A., Allas, R.B., Gristina, L., Cerdà, A., Pereira, P., Novara, A., 2016. Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271: 144–149.

Gómez, J.A., Guzmán, M.G., Giráldez, J.V., Fereres, E., 2009. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research 106: 137–144.

Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils 27(4): 315-334.

Grunwald, S., 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152(3-4): 195–207.

Harrison, M.N., Jackson, J.K., 1958. Ecological classification of the vegetation of the Sudan. Ecological classification of the vegetation of the Sudan, Ministry of Agriculture and Forests, Khartoum, Sudan.

Hartemink, A.E., Minasny, B., 2014. Towards digital soil morphometrics. Geoderma 230-231: 305-317.

He, Y., Chen, D., Li, B.G., Huang, Y.F., Hu, K.L., Li, Y., Willett, I.R., 2009. Sequential indicator simulation and indicator kriging estimation of 3-dimensional soil textures. Australian Journal of Soil Research 47(6): 622-631.

Jin, K., Cornelis, W.M., Gabriels, D., Baert, M., Wu, H.J., Schiettecatte, W., Cai, D.X., De Neve, S., Jin, J.Y., Hartmann, R., Hofman, G., 2009. Residue cover and rainfall intensity effects on runoff soil organic carbon losses. Catena 78(1): 81–86.

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P.C., Boivin, P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma 302: 14–21.

Johnston, K., Ver Hoef, J. M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS geostatistical analyst (Vol. 380). ESRI Press, Redlands.

Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà, A., 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment 610-611: 997–1009.

Kempen, B., Brus, D.J., Stoorvogel, J.J., 2011. Three-dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma 162(1-2): 107-123.

Keshavarzi, A., Tuffour, H., Bagherzadeh, A., Duraisamy, V., 2018. Spatial and Fractal Characterization of Soil Properties across Soil Depth in an Agricultural Field, Northeast Iran. Eurasian Journal of Soil Science 7(2): 35–45.

Kılıç, K., Özgöz, E., Akbaş, F., 2004. Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey. Soil and Tillage Research 76(1): 1-11.

Lado, M., Paz, A., Ben-Hur, M., 2004. Organic matter and aggregate-size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal 68(1): 234-242.

Leuangthong, O., McLennan, J.A., Deutsch, C.V., 2004. Minimum acceptance criteria for geostatistical realizations. Natural Resources Research 13(3): 131-141.

Liu, Z.P., Shao, M.A., Wang, Y.Q., 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197-198: 67-78.

Martín, J.R., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Corbí, J.G., Boluda, R., 2016. Assessment of the soil organic carbon stock in Spain. Geoderma 264: 117-125.

Ministry of Energy and Mines, 1981. Geological map of Sudan, scale: 1: 2,000,000, Geological and Mineral Resources Department, Sudan.

Mlih, R., Bol, R., Amelung, W., Brahim, N., 2016. Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: a mini-review. Journal of Arid Land 8(1): 77–92.

Nasri, B., Fouché, O., Torri, D., 2015. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131: 99–108.

Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, A.L. Page, R.H. Miller, D.R. Keeney (Eds.), 2nd Ed. Agronomy Monograph No. 9, ASA-SSSA, Madison, Wisconsin, USA. pp.539–573.

Peel, M. C., Finlayson, B. L., McMahon, T. A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644.

Pereira, P., Brevik, E., Trevisani, S., 2018. Mapping the environment. Science of the Total Environment 610–611: 17–23.

Regalado, C.M., Ritter, A., 2006. Geostatistical tools for characterizing the spatial variability of soil water repellency parameters in a laurel forest watershed. Soil Science Society of America Journal 70(4): 1071-1081.

Reza, S.K., Sarkar, D., Baruah, U., Das, T.H., 2010. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura. Agropedology 20(1): 38-48.

Rodrigo Comino, J., Bogunovic, I., Mohajerani, H., Pereira, P., Cerdà, A., Ruiz-Sinoga, J., Ries, J., 2017. The impact of vineyard abandonment on soil properties and hydrological processes. Vadose Zone Journal 16(12).

Rosemary, F., Indraratne, S. P., Weerasooriya, R., Mishra, U., 2017. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena 150: 53-61.

Scharlemann, J.P., Tanner, E.V., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5(1): 81-91.

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., 2012. Field book for describing and sampling soils. National Soil Survey Center, Natural Resources Conservation Service, U.S. Department of Agriculture, Books Express Publishing, 298p.

Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U., Bagherzadeh, A., Mousavi, S.R., Karimi, S., 2017. Modeling soil cation exchange capacity using soil parameters: assessing the heuristic models. Computer and Electronics in Agriculture 135: 242–251.

Smith, J.O., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J., Ewert, F., 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology 11(12): 2141-2152.

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC.

Steel, R., Torrie, G.D., 1980. Principles and Procedures of Statistics: A Biometrical Approach. McGrow-Hill: Sustainable Development. 663p.

Sulieman, M.M., Ibrahim, I.S., Elfaki, J., 2015. Evaluation of Land Suitability for Agriculture under Irrigation at Khartoum North, Sudan. International Journal of Scientific and Research Publications.  5(9).

Suliman, M.M., Ibrahim, I.S., Elfaki, J., 2015. Land suitability characterization for crop and fruit production of some river Nile Terraces, Khartoum North, Sudan. International Journal of Scientific and Research Publications 5(10).

Sulieman, M.M., Ibrahim, I.S., Elfaki, J.T., 2016. Genesis and classification of some soils of the River Nile terraces: a case study of Khartoum North, Sudan. Journal of Geoscience and Environment Protection 4: 1-16.

Sulieman, M., Saeed, I., Hassaballa, A., Rodrigo-Comino, J., 2018. Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. Catena 167: 327-339.‏

Tang, X., Xia, M., Pérez-Cruzado, C., Guan, F., Fan, S., 2017. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports 7: 42640.

Van der Kevie, W., 1976. Climatic zones in the Sudan. Soil Survey Department, Wad Medani, Sudan

Wang, Y., Zhang, X., Huang, C., 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150(1-2): 141-149.

Whaiteman, A. J., 1971. The geology of the Sudan Republic. Oxford: Calorendon Perss.

Yang, Y., Zhu, J., Tong, X., Wang, D., 2009. The spatial pattern characteristics of soil nutrients at the field scale. In International Conference on Computer and Computing Technologies in Agriculture II., Volume 1. CCTA 2008. IFIP Advances in Information and Communication Technology, vol 293. Li, D., Zhao, C. (Eds.). Springer, Boston, MA., USA. pp. 125-134.

Zeraatpisheh, M., Ayoubi, S., Jafari, A., Finke, P., 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology 285: 186–204.



Eurasian Journal of Soil Science