Eurasian Journal of Soil Science

Volume 8, Issue 1, Jan 2019, Pages 1 - 10
DOI: 10.18393/ejss.468100
Stable URL: http://ejss.fess.org/10.18393/ejss.468100
Copyright © 2019 The authors and Federation of Eurasian Soil Science Societies



Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.)

X

Article first published online: 07 Oct 2018 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 160 | 1064

Zaidun,S., Jalloh,M., Awang,A., Sam,L., Besar,N., Musta,B., Ahmed,O., Omar,L., 2019. Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Eurasian J Soil Sci 8(1):1 - 10. DOI : 10.18393/ejss.468100
Zaidun,S.Jalloh,M.,Awang,A.Sam,L.Besar,N.Musta,B.Ahmed,O.,& Omar,L. Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.) Eurasian Journal of Soil Science, 8(1):1 - 10. DOI : 10.18393/ejss.468100
Zaidun,S.Jalloh,M.,Awang,A.Sam,L.Besar,N.Musta,B.Ahmed,O., and ,Omar,L."Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.)" Eurasian Journal of Soil Science, 8.1 (2019):1 - 10. DOI : 10.18393/ejss.468100
Zaidun,S.Jalloh,M.,Awang,A.Sam,L.Besar,N.Musta,B.Ahmed,O., and ,Omar,L. "Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.)" Eurasian Journal of Soil Science,8(Jan 2019):1 - 10 DOI : 10.18393/ejss.468100
S,Zaidun.M,Jalloh.A,Awang.L,Sam.N,Besar.B,Musta.O,Ahmed.L,Omar "Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.)" Eurasian J. Soil Sci, vol.8, no.1, pp.1 - 10 (Jan 2019), DOI : 10.18393/ejss.468100
Zaidun,Siti Wardah ;Jalloh,Mohamadu Boyie ;Awang,Azwan ;Sam,Lum Mok ;Besar,Normah Awang ;Musta,Baba ;Ahmed,Osumanu Haruna ;Omar,Latifah Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Eurasian Journal of Soil Science, (2019),8.1:1 - 10. DOI : 10.18393/ejss.468100

How to cite

Zaidun, S., Jalloh, M., Awang, A., Sam, L., Besar, N., Musta, B., Ahmed, O., Omar, L., 2019. Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Eurasian J. Soil Sci. 8(1): 1 - 10. DOI : 10.18393/ejss.468100

Author information

Siti Wardah Zaidun , Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
Mohamadu Boyie Jalloh , Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
Azwan Awang , Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
Lum Mok Sam , Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
Normah Awang Besar , Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
Baba Musta , Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
Osumanu Haruna Ahmed , Department of Crop Science, Faculty of Agriculture and Food Science, Universiti Putra Malaysia, Sarawak, Malaysia
Latifah Omar ,

Publication information

Article first published online : 07 Oct 2018
Manuscript Accepted : 26 Sep 2018
Manuscript Received: 26 Jan 2018
DOI: 10.18393/ejss.468100
Stable URL: http://ejss.fesss.org/10.18393/ejss.468100

Abstract

Increase in cost of chemical fertilizers encourages the use of soil amendments such as biochar and zeolites to improve soil fertility. In this study, biochar produced from empty fruit bunch-palm oil mill effluent (EFB-POME) and clinoptilolite zeolite were used as soil amendments to improve soil fertility. The field experiment was carried out for two planting cycles to determine the effects of different rates of EFB POME biochar (0, 10, and 20 t ha-1), clinoptilolite zeolite (0, 1.25, and 2.5 t ha-1), and urea (60 and 120 kg ha-1) on selected soil chemical properties of Tanjung Lipat (Typic Paleudults). Biochar produced from EFB-POME increase soil total N, P, K, Ca, and Mg. The higher soil total N, P, K, Ca, and Mg could be related to the increase in soil pH, cation exchange capacity, and total organic carbon in soil with EFB-POME biochar but not with clinoptilolite zeolite. Thus, EFB-POME biochar was more suitable to be used in a tropical soil (Typic Paleudults) compared to clinoptilolite zeolite for improving the selected soil pH, CEC, TOC and available P, K, Ca and Mg.

Keywords

Biochar, clinoptilolite zeolite, EFB-POME, tropical acid soil, agriculture waste.

Corresponding author

References

Abewa, A., Yitaferu, B., Selassie, Y.G., Amare, T., 2014. The role of biochar on acid soil reclamation and yield of teff (Eragrostis tef (Zucc) Trotter) in Northwestern Ethiopia. Journal of Agricultural Sciences 6(1): 1-12.

Acres, B.D, Bower, R.P., Burrough, P.A., Folland, C.J., Kalsi, M.S., Thomas, P., Wright, P.S., 1975. The Soils of Sabah, Vol. 5. Land Resources Division, Ministry of Overseas Development. England. 147p.

Akbar, S., Khatoon, S., Shehnaz, R., Hussain, T., 1999. Natural zeolites: Structures, classification, origin, occurrence and importance. Science International (Lahore) 11(1): 73–78.

Anda, M., Shamshuddin, J., Fauziah, C.I., Syed Omar, S.R. 2008. Mineralogy and factors controlling charge development of three oxisols developed from different parent materials. Geoderma 143(1-2): 153-167.

Basiron, Y., Weng, C.K., 2004. The oil palm and its sustainablity. Journal of Oil Palm Research 16(1): 1-10.

Bazmi, A.A., Zahedi, G., Hashim, H., 2011. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews 15(1): 574-583.

Chan, K.Y., Zwieten, L.V., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45(8): 629-634.

Cheng, C. H., Lehmann, J., Engelhard, M., 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72(6): 1598–1610.

Cheng, C.H., Lehmann, J., Thies, J. E., Burton, S.D., Engelhard, M.H., 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37(11): 1477-1488.

Coleman, N.T., Thomas, G.W., 1967. The Basic Chemistry of Soil Acidity. In: Soil Acidity and Liming. Pearson, R.W., Adams, F. (Eds.). American Society of Agronomy. Wisconsin, Madison, USA. pp.1-41

Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G.D., Rutherford, D.W., Sparrevik, M., Hale, S.E., Obia, A., Mulder, J., 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3(2): 256-274.

FAO, 2005. The importance of soil organic matter. Key to drought-resistant soil and sustained food production. FAO Soils Bulletin 80. Food and Agriculture Organization of the United Nations, Rome, Italy. 80p. Available at [access date: 26.01.2018]:  http://www.fao.org/3/a-a0100e.pdf

Fellet, G., Marchiol, L., Delle Vedova, G., Peressotti, A., 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 83(9): 1262-1267.

Glaser, B., Guggenberger, G., Zech, W., Ruivo, M.L., 2003. Soil organic matter stability in Amazonian Dark Earths. In: Amazonian Dark Earths: Origin, Properties, Management. Lehmann, J. Kern, D.C., Glaser, B., Woods, W.I. (Eds.). Kluwer Academic Publishers, Dordrecht, Netherlands. pp.227-241.

IFA, 2014. Fertilizer Outlook 2014-2018. Institute of Fertilizer Industry Association (IFA). 82nd IFA Annual Conference. 26-28 May 2014, Sydney, Australia. Available at [access date: 26.01.2018]:  https://www.fertilizer.org//images/Library_Downloads/2014_ifa_sydney_summary.pdf

Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems and Environment 140(1-2): 309–313.

Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726-739.

Lehmann, J., Gaunt, J., Rondon, M., 2006. Biochar sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change 11(2): 403–427.

Lehmann, J., Joseph, S. 2009. Biochar for environmental management: an introduction. In: Biochar for Environmental Management: Science and Technology. Lehmann, J., Joseph, S. (Eds.). Earthscan, London, UK. pp. 1-12.

Lehmann, J., Liang, B., Solomon, D, Lerotic, M., Luizão, F., Kinyangi, J., Schäfer, T., Wirick, S and Jacobsen, C. 2005. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochemical Cycles 19(1): GB1013.

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota - A review. Soil Biology and Biochemistry 43(9): 1812-1836.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F.J., Peterson, J., Neves, E.G., 2006. Black carbon increases caution exchange capacity in soils. Soil Science Society of America Journal 70(5): 1719-1730.

Magdoff, F., Lanyon, L., Liebhardt, B., 1997. Nutrient cycling, transformations and flows: Implications for more sustainable agriculture. Advances in Agronomy 60: 1-73.

Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333(1-2): 117-128.

Muhammad Zaid, M.K., Shaharudin, B., Sharakbah, Y., 2014. Prolong usage pf inorganic fertilizer in relation to soil acidity. Proceedings of the Soil Science Society Conference of Malaysia. "Soil Management and Environment". 8- 10 April 2014. Kangar, Perlis, Malaysia.

Navrotsky, A., Petrovic, I., Chen, C.Y., Davis, M.E., 1995. Energetics of microporous materials. Journal of Non-Crystalline Solids 192&193: 474-477.

Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science 12(3): 369-376.

Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Ahmedna, M., Rehra, D., Watss, D.W., Busscher, W.J., Schimberg, H., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3: 195-206.

Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin, Heidelberg, The Netherlands. 993p.

Polat, E., Karaca, M., Demir, H., Naci Onus, A., 2004. Use of natural zeolite (Clinoptilolite) in Agriculture. Journal of Fruit and Ornamental Plant Research 12:183-189.

Prabha, S.V., Renuka, R., Sreekanth, N.P., Padmakumar, B., Thomas, A.P., 2013. A study of the fertility and carbon sequestration potential of rice soil with respect to the application of biochar and selected amendments. Annals of Environmental Science 7: 17-30.

Rădulescu, H., 2013. Soil treatment effects of zeolitic volcanic tuff on soil fertility. Research Journal of Agriculture Science 45(2): 238-244.

Sanchez, P.A., Logan, T.J., 1992. Myths and science about the chemistry and fertility of soils in the tropics. In: Chemistry and fertility of soils. Lal, R., Sanchez, P.A. (Eds.). Soil Science Society of America and American Society of Agronomy. Wisconsin, Madison, USA. pp. 35-46.

Sand, L.B., Mumpton, F.A., 1978. Natural zeolites: occurrence, properties, use. Pergamon Press. New York, USA. 546p.

Scherr, S.J., Yadav, S., 1996. Land Degradation in the Developing World: Implications for Food, Agriculture, and the Environment to the Year 2020. Food, Agriculture, and the Environment Discussion Paper 14. International Food Policy Research Institute. Washington D.C., USA. 35p.

Schlesinger, W.H., 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, USA, 588p.

Shamshuddin, J., Fauziah, C.I., Anda, M., Kapok, J., Shazana, M.A.R.S., 2011. Using ground basalt and/or organic fertilizer to enhance productivity of acid soils in Malaysia for Crop Production. Malaysian Journal of Soil Science 15(1): 127-146.

Shamshuddin, J., Ishak C.F., 2010. Fertilizer requirement and management. Weathered tropical soils the ultisols and oxisols. Universti Putra Malaysia Press 9: 137.

Shamshuddin, J., Noordin, W.D. 2011. Classification and management of highly weathered soils in Malaysia for production of plantation crops. In: Principles, Application and Assessment in Soil Science. Burcu, E., Özkaraova, G. (Eds.). InTech Open Access Publisher, Crotia, pp.75-86.

Sinclair, K. Slavich, P., van Zwieten, L., Downie, A., 1994. Productivity and nutrient availability on a ferrosol: Biochar, lime and fertiliser. Proceedings of the 24th Annual Conference of the Grassland Society of NSW.”The Grass is Greener”. Grassland Society of New South Wales Inc.. 5-6 August 2009. Taree, Australia. pp.119-122.

Sukartono, Utomo, W.H., Kusuma, Z., Nugroho, W.H.İ 2011. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture 49(1-2): 47-52.

Tan, K.H., 1995. Soil sampling, preparation and analysis. Marcel Dekker Inc. New York. USA. 411p.

Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34(4): 231–238.

van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327(1-2): 235-246.

von Uexkull, H.R., 1986. Efficient fertilizer use in acid upland soils of the humid tropics. FAO Fertilizer and Plant Nutrition Bulletin 10. Food and Agriculture Organization of the United Nations, Rome, Italy. 80p. Available at [access date: 26.01.2018]:  http://www.fao.org/docrep/018/aq356e/aq356e.pdf

Wahab, A.G., Rittgers, C., 2014. Malaysia grain and feed annual 2014. USDA Foreign Agriculture Service, Global Agricultural Information Network. Available at [access date: 26.01.2018]:  https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Kuala%20Lumpur_Malaysia_3-27-2017.pdf

Widowati, Asnah. 2014. Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. Journal of Agricultural Science 6(2): 24-32.

Widowati, Utomo, W.H., Guritno, B., Soehono, L.A., 2012. The effects of biochar on the growth and n fertiliser requirement of maize (Zea mays L.) in green house experiment. Journal of Agricultural Science 4(5): 255-262.

Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L. Zheng, J., Zhang, X., 2011.  Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil 351(1-2): 263-275.

Abstract

Increase in cost of chemical fertilizers encourages the use of soil amendments such as biochar and zeolites to improve soil fertility. In this study, biochar produced from empty fruit bunch-palm oil mill effluent (EFB-POME) and clinoptilolite zeolite were used as soil amendments to improve soil fertility. The field experiment was carried out for two planting cycles to determine the effects of different rates of EFB POME biochar (0, 10, and 20 t ha-1), clinoptilolite zeolite (0, 1.25, and 2.5 t ha-1), and urea (60 and 120 kg ha-1) on selected soil chemical properties of Tanjung Lipat (Typic Paleudults). Biochar produced from EFB-POME increase soil total N, P, K, Ca, and Mg. The higher soil total N, P, K, Ca, and Mg could be related to the increase in soil pH, cation exchange capacity, and total organic carbon in soil with EFB-POME biochar but not with clinoptilolite zeolite. Thus, EFB-POME biochar was more suitable to be used in a tropical soil (Typic Paleudults) compared to clinoptilolite zeolite for improving the selected soil pH, CEC, TOC and available P, K, Ca and Mg.

Keywords: Biochar, clinoptilolite zeolite, EFB-POME, tropical acid soil, agriculture waste.

References

Abewa, A., Yitaferu, B., Selassie, Y.G., Amare, T., 2014. The role of biochar on acid soil reclamation and yield of teff (Eragrostis tef (Zucc) Trotter) in Northwestern Ethiopia. Journal of Agricultural Sciences 6(1): 1-12.

Acres, B.D, Bower, R.P., Burrough, P.A., Folland, C.J., Kalsi, M.S., Thomas, P., Wright, P.S., 1975. The Soils of Sabah, Vol. 5. Land Resources Division, Ministry of Overseas Development. England. 147p.

Akbar, S., Khatoon, S., Shehnaz, R., Hussain, T., 1999. Natural zeolites: Structures, classification, origin, occurrence and importance. Science International (Lahore) 11(1): 73–78.

Anda, M., Shamshuddin, J., Fauziah, C.I., Syed Omar, S.R. 2008. Mineralogy and factors controlling charge development of three oxisols developed from different parent materials. Geoderma 143(1-2): 153-167.

Basiron, Y., Weng, C.K., 2004. The oil palm and its sustainablity. Journal of Oil Palm Research 16(1): 1-10.

Bazmi, A.A., Zahedi, G., Hashim, H., 2011. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews 15(1): 574-583.

Chan, K.Y., Zwieten, L.V., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45(8): 629-634.

Cheng, C. H., Lehmann, J., Engelhard, M., 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72(6): 1598–1610.

Cheng, C.H., Lehmann, J., Thies, J. E., Burton, S.D., Engelhard, M.H., 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37(11): 1477-1488.

Coleman, N.T., Thomas, G.W., 1967. The Basic Chemistry of Soil Acidity. In: Soil Acidity and Liming. Pearson, R.W., Adams, F. (Eds.). American Society of Agronomy. Wisconsin, Madison, USA. pp.1-41

Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G.D., Rutherford, D.W., Sparrevik, M., Hale, S.E., Obia, A., Mulder, J., 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3(2): 256-274.

FAO, 2005. The importance of soil organic matter. Key to drought-resistant soil and sustained food production. FAO Soils Bulletin 80. Food and Agriculture Organization of the United Nations, Rome, Italy. 80p. Available at [access date: 26.01.2018]:  http://www.fao.org/3/a-a0100e.pdf

Fellet, G., Marchiol, L., Delle Vedova, G., Peressotti, A., 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 83(9): 1262-1267.

Glaser, B., Guggenberger, G., Zech, W., Ruivo, M.L., 2003. Soil organic matter stability in Amazonian Dark Earths. In: Amazonian Dark Earths: Origin, Properties, Management. Lehmann, J. Kern, D.C., Glaser, B., Woods, W.I. (Eds.). Kluwer Academic Publishers, Dordrecht, Netherlands. pp.227-241.

IFA, 2014. Fertilizer Outlook 2014-2018. Institute of Fertilizer Industry Association (IFA). 82nd IFA Annual Conference. 26-28 May 2014, Sydney, Australia. Available at [access date: 26.01.2018]:  https://www.fertilizer.org//images/Library_Downloads/2014_ifa_sydney_summary.pdf

Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems and Environment 140(1-2): 309–313.

Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726-739.

Lehmann, J., Gaunt, J., Rondon, M., 2006. Biochar sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change 11(2): 403–427.

Lehmann, J., Joseph, S. 2009. Biochar for environmental management: an introduction. In: Biochar for Environmental Management: Science and Technology. Lehmann, J., Joseph, S. (Eds.). Earthscan, London, UK. pp. 1-12.

Lehmann, J., Liang, B., Solomon, D, Lerotic, M., Luizão, F., Kinyangi, J., Schäfer, T., Wirick, S and Jacobsen, C. 2005. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochemical Cycles 19(1): GB1013.

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota - A review. Soil Biology and Biochemistry 43(9): 1812-1836.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F.J., Peterson, J., Neves, E.G., 2006. Black carbon increases caution exchange capacity in soils. Soil Science Society of America Journal 70(5): 1719-1730.

Magdoff, F., Lanyon, L., Liebhardt, B., 1997. Nutrient cycling, transformations and flows: Implications for more sustainable agriculture. Advances in Agronomy 60: 1-73.

Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333(1-2): 117-128.

Muhammad Zaid, M.K., Shaharudin, B., Sharakbah, Y., 2014. Prolong usage pf inorganic fertilizer in relation to soil acidity. Proceedings of the Soil Science Society Conference of Malaysia. "Soil Management and Environment". 8- 10 April 2014. Kangar, Perlis, Malaysia.

Navrotsky, A., Petrovic, I., Chen, C.Y., Davis, M.E., 1995. Energetics of microporous materials. Journal of Non-Crystalline Solids 192&193: 474-477.

Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science 12(3): 369-376.

Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Ahmedna, M., Rehra, D., Watss, D.W., Busscher, W.J., Schimberg, H., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3: 195-206.

Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin, Heidelberg, The Netherlands. 993p.

Polat, E., Karaca, M., Demir, H., Naci Onus, A., 2004. Use of natural zeolite (Clinoptilolite) in Agriculture. Journal of Fruit and Ornamental Plant Research 12:183-189.

Prabha, S.V., Renuka, R., Sreekanth, N.P., Padmakumar, B., Thomas, A.P., 2013. A study of the fertility and carbon sequestration potential of rice soil with respect to the application of biochar and selected amendments. Annals of Environmental Science 7: 17-30.

Rădulescu, H., 2013. Soil treatment effects of zeolitic volcanic tuff on soil fertility. Research Journal of Agriculture Science 45(2): 238-244.

Sanchez, P.A., Logan, T.J., 1992. Myths and science about the chemistry and fertility of soils in the tropics. In: Chemistry and fertility of soils. Lal, R., Sanchez, P.A. (Eds.). Soil Science Society of America and American Society of Agronomy. Wisconsin, Madison, USA. pp. 35-46.

Sand, L.B., Mumpton, F.A., 1978. Natural zeolites: occurrence, properties, use. Pergamon Press. New York, USA. 546p.

Scherr, S.J., Yadav, S., 1996. Land Degradation in the Developing World: Implications for Food, Agriculture, and the Environment to the Year 2020. Food, Agriculture, and the Environment Discussion Paper 14. International Food Policy Research Institute. Washington D.C., USA. 35p.

Schlesinger, W.H., 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, USA, 588p.

Shamshuddin, J., Fauziah, C.I., Anda, M., Kapok, J., Shazana, M.A.R.S., 2011. Using ground basalt and/or organic fertilizer to enhance productivity of acid soils in Malaysia for Crop Production. Malaysian Journal of Soil Science 15(1): 127-146.

Shamshuddin, J., Ishak C.F., 2010. Fertilizer requirement and management. Weathered tropical soils the ultisols and oxisols. Universti Putra Malaysia Press 9: 137.

Shamshuddin, J., Noordin, W.D. 2011. Classification and management of highly weathered soils in Malaysia for production of plantation crops. In: Principles, Application and Assessment in Soil Science. Burcu, E., Özkaraova, G. (Eds.). InTech Open Access Publisher, Crotia, pp.75-86.

Sinclair, K. Slavich, P., van Zwieten, L., Downie, A., 1994. Productivity and nutrient availability on a ferrosol: Biochar, lime and fertiliser. Proceedings of the 24th Annual Conference of the Grassland Society of NSW.”The Grass is Greener”. Grassland Society of New South Wales Inc.. 5-6 August 2009. Taree, Australia. pp.119-122.

Sukartono, Utomo, W.H., Kusuma, Z., Nugroho, W.H.İ 2011. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture 49(1-2): 47-52.

Tan, K.H., 1995. Soil sampling, preparation and analysis. Marcel Dekker Inc. New York. USA. 411p.

Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34(4): 231–238.

van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327(1-2): 235-246.

von Uexkull, H.R., 1986. Efficient fertilizer use in acid upland soils of the humid tropics. FAO Fertilizer and Plant Nutrition Bulletin 10. Food and Agriculture Organization of the United Nations, Rome, Italy. 80p. Available at [access date: 26.01.2018]:  http://www.fao.org/docrep/018/aq356e/aq356e.pdf

Wahab, A.G., Rittgers, C., 2014. Malaysia grain and feed annual 2014. USDA Foreign Agriculture Service, Global Agricultural Information Network. Available at [access date: 26.01.2018]:  https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Kuala%20Lumpur_Malaysia_3-27-2017.pdf

Widowati, Asnah. 2014. Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. Journal of Agricultural Science 6(2): 24-32.

Widowati, Utomo, W.H., Guritno, B., Soehono, L.A., 2012. The effects of biochar on the growth and n fertiliser requirement of maize (Zea mays L.) in green house experiment. Journal of Agricultural Science 4(5): 255-262.

Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L. Zheng, J., Zhang, X., 2011.  Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil 351(1-2): 263-275.



Eurasian Journal of Soil Science