Eurasian Journal of Soil Science

Volume 5, Issue 4, Oct 2016, Pages 307 - 313
DOI: 10.18393/ejss.2016.4.307-313
Stable URL: http://ejss.fess.org/10.18393/ejss.2016.4.307-313
Copyright © 2016 The authors and Federation of Eurasian Soil Science Societies



Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant

X

Article first published online: 25 May 2016 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 124 | 862

Kasırğa,E., Demiral,M., 2016. Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant. Eurasian J Soil Sci 5(4):307 - 313. DOI : 10.18393/ejss.2016.4.307-313
Kasırğa,E.,& Demiral,M. Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2016.4.307-313
Kasırğa,E., and ,Demiral,M. "Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2016.4.307-313
Kasırğa,E., and ,Demiral,M. "Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2016.4.307-313
E,Kasırğa.MA,Demiral "Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.2016.4.307-313
Kasırğa,Erkan ;Demiral,Mehmet Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant. Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.2016.4.307-313

How to cite

Kasırğa, E., Demiral, M., A.2016. Salt stress-mineral nutrient relations in olive (Olea europaea L.) plant. Eurasian J. Soil Sci. 5(4): 307 - 313. DOI : 10.18393/ejss.2016.4.307-313

Author information

Erkan Kasırğa , Department of Soil Science and Plant Nutrition, Faculty of Agriculture, University of Adnan Menderes, Aydın, Turkey
Mehmet Demiral , Department of Soil Science and Plant Nutrition, Faculty of Agriculture, University of Adnan Menderes, Aydın, Turkey

Publication information

Issue published online: 01 Oct 2016
Article first published online : 25 May 2016
Manuscript Accepted : 28 Apr 2016
Manuscript Received: 15 Feb 2016
DOI: 10.18393/ejss.2016.4.307-313
Stable URL: http://ejss.fesss.org/10.18393/ejss.2016.4.307-313

Abstract

In order to investigate the effect of salt stress on mineral nutrients, one year-old olive (Olea europaea L. cv. Gemlik) seedlings were exposed to increasing levels of NaCl salinity (4 dS m-1, 8 dS m-1 and 12 dS m-1, respectively) in pot culture and Na, K, Ca, Mg, N, P, Cl, Fe, Mn, Zn concentrations, ratios of K/Na and (K+Ca+Mg)/Na of the plants were ascertained. Sodium and Cl concentrations of plant parts increased with the salinity and the level in the aerial parts of the plants were lower than that of root. Salinity led to a general decrease in K concentrations in the all organs with the exception of subsoil trunk. Calcium concentrations of the plant parts decreased significantly by salinity with the exception of roots and subsoil trunk. Salinity affected Mg concentrations only in trunk and leaves. Treatments significantly decreased the ratios of K/Na and (K+Ca+Mg)/Na of all the plant organs. Compared to control application the highest salinity level (12 dS m-1) decreased the N concentrations of all the plant organs statistically except roots. Similarly salinity increased the concentrations of P in all plant parts except trunks compared to control treatment. Concentrations of all the micronutrients detected in the study were found lower in aerial parts than the roots.

Keywords

Olive cultivar, salinity, nutrient contents, nutrient ratios

Corresponding author

References

Brown, J.G., Jackson, R.K., 1955. A note on the potentiometric determination of chloride. Proceedings of the American Society Horticultural Science 65: 187-193.

Canözer, Ö.,1991. Standart zeytin çeşitleri kataloğu. T.C. Tarım ve Köyisleri Bakanlığı, Yayın Dairesi Bşk. Mesleki Yayınlar, Genel: 334, Seri: 16. Ankara, Türkiye [in Turkish]

Cerezo, M., Garcia-Augustin, P., Serna, M.D., Primo-Millo, E., 1997. Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Science 126 (1): 105-112.

Chabra, R., Ringoet, A., Lamberts, D.,1976. Kinetics and interaction of chloride and phosphate absorption by intact tomato plants (Lycopersicon esculentum Mill.) from a dilute nutrient solution. Zeitschrift für Pflanzenphysiologie 78(3): 253-26.

Chauhan, R.P.S., Chauhan, C.P.S., Kumar, D., 1980. Free proline accumulation in cereals in relation to salt tolerance. Plant and Soil 57(2): 167-175.

de Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A., 2005. Changes in growth and insolute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54(1): 69–76.

Demiral, M.A., 2005. Comparative response of two olive (Olea europaea L.) cultivars to salinity. Turkish Journal of Agriculture and Forestry 29(4): 267-274.

Dunlop, J., Phung, H.T., Meeking, R., White, D.W.R., 1997. The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Australian Journal of Plant Physiology. 24(5):623-629.

Epstein, E., Rains, D.W., Elzam, O.E.,1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences of the United States of America 49(5): 684–692.

Evliya, H., 1964. Kültür bitkilerinin beslenmesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 36, Ders Kitabı No. 17, Ankara Üniversitesi Basımevi, Ankara, Türkiye (in Turkish).

Forde, F.G., Clarkson, D.T., 1999. Nitrate and ammonium nutrition of plants:physiological and molecular perspectives. Advances in Botanical Research 30: 1-90.

Furihata, T., Suzuki, M., Sakurai, H., 1992. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant and Cell Physiology 33(8):1151-1157.

Ghafoor, A., Qadir, M., Murtaza, G., 2004. Salt-affected soils: Principles of management. Allied Book Centre Publications, Lahore, Pakistan. pp. 110-123.

Grattan, S.R., Grieve, C.M., 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae 78(14): 127–157.

Hoagland, D.R., Arnon, D.I.,1950. The water-culture method for growing plants without soil. University of California, College of Agriculture, California Agricultural Experiment Station, Circular No. 347. Berkeley, USA. 39p.

Jacoby, B., 1999. Mechanisms involved in salt tolerance of plants. In: Handbook of plant and crop stress. M Pessarakli (Ed.). Marcel Dekker Inc., New York, USA. pp. 97–123.

Jones, JR-JB., Wolf, B., Mills, H.A., 1991. Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing. Athens, Georgia, USA. 312 p.

Kellogg, E.C., 1952. Our garden soils. The Macmillon Company, New York, USA. 232p

Köhler, B., Raschke, K., 2000. The delivery of salts to the xylem. Three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiology 122(1): 243-254.

Lauchli, A., Epstein, E., 1990. Plant responses to saline and sodic conditions. In: Agricultural salinity assessment and management. K.K. Tanji (Ed.). American Society Civil Engineers, Volume 71, New York, USA. pp. 113-137.

Leggewie, G., Wilmitzer, L., Riesmeier, J.W., 1997. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9(3): 381-392.

Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA Soil Test For Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal 42 (3): 421-428.

Little, T.M., Hills, F.J., 1978. Agricultural experimentation: design and analysis. John Wiley and Sons Inc. New York, USA, 350p.

Loue, A., 1968. Diagnostic Petiolaire de Prospection. Etudes sur la Nutrition et la Fertilisation Potassiques de la Vigne. Societe Commerciale des Potasses d’Alsace Services Agronomiques, France. pp. 31-41. [in French]

Maas, E.V., 1986. Salt tolerance of plants. Applied Agricultural Research 1:12-26.

Maas, EV., 1990. Crop salt tolerance. In: Agricultural salinity assessment and management. K.K. Tanji (Ed.). American Society Civil Engineers, Volume 71, New York, USA. pp. 262-304.

Marschner, H., 1995. Mineral nutrition of higher plants. 2nd Edition. Academic Press, London. UK. 901p.

Martinez, V., Lauchli, A., 1994. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytologist 125: 609-614.

Martinez, V., Bernstein, N., Lauchli, A., 1996. Salt-induced inhibition of phosphorus transport in lettuce plants. Physiologia Plantarum 97(1):118-122.

Melgar, J.C., Benlloch, M., Fernández-Escobar, R., 2006. Calcium increases sodium exclusion in olive plants. Scientia Horticulturae 109(3): 303-305.

Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell and Environment 25(2): 239-250.

Olsen, S.R., Sommers, E.L., 1982. Phosphorus. In: Methods of soil analysis, Part 2, Chemical and microbiological properties, Second Edition. Number 9, Page,  A.L., Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp.403-448.

Peuke, A.D., Glaab, J., Kaiser, W.M., Jeschke, W.D., 1996. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow andmetabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. Journal of Experimental Botany 47(3): 377-385.

Pizer, N.H., 1967. Some advisory aspect: Soil potassium and magnesium. Technical Bulletin No. 14, 184p.

Rubinigg, M., Posthumus, F., Ferschke, M., Elzenga, J.T.M., Stulen, I., 2003. Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant and Soil 250 (2): 201-213.

Schachtman, D.P., Reid, R.J., Ayling, S.M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology 116(2): 447-453.

Soil Survey Staff, 1951. Soil survey manual. Agricultural Research Administration, United States Department of Agriculture, Agricultural Handbook No.18, Washington, USA. 503p.

Tattini, M., Bertoni, P., Caselli, S., 1992. Genotypic responses of olive plants to sodium chloride. Journal of Plant Nutrition 15(9): 1467-1485.

Thun, R., Hermann, R., Knickmann, E., 1955. Die Untersuchung von Boden. Volume 1 of Handbuch der landwirtschaftlichen Versuchs und Untersuchungsmethodik. Neumann Verlag. Radelbeul und Berlin, Deutschland. 271p. [in German]

U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Agricultural Handbook No. 60, Washington, USA. 160p.

Westerman, R.L., 1990. Soil testing and plant analysis. Soil Science Society of America (SSAA) Book Series, Vol. 3, Issue 3. SSSA Publications, Madison, Wisconsin, USA. 784p.

Abstract

In order to investigate the effect of salt stress on mineral nutrients, one year-old olive (Olea europaea L. cv. Gemlik) seedlings were exposed to increasing levels of NaCl salinity (4 dS m-1, 8 dS m-1 and 12 dS m-1, respectively) in pot culture and Na, K, Ca, Mg, N, P, Cl, Fe, Mn, Zn concentrations, ratios of K/Na and (K+Ca+Mg)/Na of the plants were ascertained. Sodium and Cl concentrations of plant parts increased with the salinity and the level in the aerial parts of the plants were lower than that of root. Salinity led to a general decrease in K concentrations in the all organs with the exception of subsoil trunk. Calcium concentrations of the plant parts decreased significantly by salinity with the exception of roots and subsoil trunk. Salinity affected Mg concentrations only in trunk and leaves. Treatments significantly decreased the ratios of K/Na and (K+Ca+Mg)/Na of all the plant organs. Compared to control application the highest salinity level (12 dS m-1) decreased the N concentrations of all the plant organs statistically except roots. Similarly salinity increased the concentrations of P in all plant parts except trunks compared to control treatment. Concentrations of all the micronutrients detected in the study were found lower in aerial parts than the roots.

Keywords: Olive cultivar, salinity, nutrient contents, nutrient ratios.

References

Brown, J.G., Jackson, R.K., 1955. A note on the potentiometric determination of chloride. Proceedings of the American Society Horticultural Science 65: 187-193.

Canözer, Ö.,1991. Standart zeytin çeşitleri kataloğu. T.C. Tarım ve Köyisleri Bakanlığı, Yayın Dairesi Bşk. Mesleki Yayınlar, Genel: 334, Seri: 16. Ankara, Türkiye [in Turkish]

Cerezo, M., Garcia-Augustin, P., Serna, M.D., Primo-Millo, E., 1997. Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Science 126 (1): 105-112.

Chabra, R., Ringoet, A., Lamberts, D.,1976. Kinetics and interaction of chloride and phosphate absorption by intact tomato plants (Lycopersicon esculentum Mill.) from a dilute nutrient solution. Zeitschrift für Pflanzenphysiologie 78(3): 253-26.

Chauhan, R.P.S., Chauhan, C.P.S., Kumar, D., 1980. Free proline accumulation in cereals in relation to salt tolerance. Plant and Soil 57(2): 167-175.

de Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A., 2005. Changes in growth and insolute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54(1): 69–76.

Demiral, M.A., 2005. Comparative response of two olive (Olea europaea L.) cultivars to salinity. Turkish Journal of Agriculture and Forestry 29(4): 267-274.

Dunlop, J., Phung, H.T., Meeking, R., White, D.W.R., 1997. The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Australian Journal of Plant Physiology. 24(5):623-629.

Epstein, E., Rains, D.W., Elzam, O.E.,1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences of the United States of America 49(5): 684–692.

Evliya, H., 1964. Kültür bitkilerinin beslenmesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 36, Ders Kitabı No. 17, Ankara Üniversitesi Basımevi, Ankara, Türkiye (in Turkish).

Forde, F.G., Clarkson, D.T., 1999. Nitrate and ammonium nutrition of plants:physiological and molecular perspectives. Advances in Botanical Research 30: 1-90.

Furihata, T., Suzuki, M., Sakurai, H., 1992. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant and Cell Physiology 33(8):1151-1157.

Ghafoor, A., Qadir, M., Murtaza, G., 2004. Salt-affected soils: Principles of management. Allied Book Centre Publications, Lahore, Pakistan. pp. 110-123.

Grattan, S.R., Grieve, C.M., 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae 78(14): 127–157.

Hoagland, D.R., Arnon, D.I.,1950. The water-culture method for growing plants without soil. University of California, College of Agriculture, California Agricultural Experiment Station, Circular No. 347. Berkeley, USA. 39p.

Jacoby, B., 1999. Mechanisms involved in salt tolerance of plants. In: Handbook of plant and crop stress. M Pessarakli (Ed.). Marcel Dekker Inc., New York, USA. pp. 97–123.

Jones, JR-JB., Wolf, B., Mills, H.A., 1991. Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing. Athens, Georgia, USA. 312 p.

Kellogg, E.C., 1952. Our garden soils. The Macmillon Company, New York, USA. 232p

Köhler, B., Raschke, K., 2000. The delivery of salts to the xylem. Three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiology 122(1): 243-254.

Lauchli, A., Epstein, E., 1990. Plant responses to saline and sodic conditions. In: Agricultural salinity assessment and management. K.K. Tanji (Ed.). American Society Civil Engineers, Volume 71, New York, USA. pp. 113-137.

Leggewie, G., Wilmitzer, L., Riesmeier, J.W., 1997. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9(3): 381-392.

Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA Soil Test For Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal 42 (3): 421-428.

Little, T.M., Hills, F.J., 1978. Agricultural experimentation: design and analysis. John Wiley and Sons Inc. New York, USA, 350p.

Loue, A., 1968. Diagnostic Petiolaire de Prospection. Etudes sur la Nutrition et la Fertilisation Potassiques de la Vigne. Societe Commerciale des Potasses d’Alsace Services Agronomiques, France. pp. 31-41. [in French]

Maas, E.V., 1986. Salt tolerance of plants. Applied Agricultural Research 1:12-26.

Maas, EV., 1990. Crop salt tolerance. In: Agricultural salinity assessment and management. K.K. Tanji (Ed.). American Society Civil Engineers, Volume 71, New York, USA. pp. 262-304.

Marschner, H., 1995. Mineral nutrition of higher plants. 2nd Edition. Academic Press, London. UK. 901p.

Martinez, V., Lauchli, A., 1994. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytologist 125: 609-614.

Martinez, V., Bernstein, N., Lauchli, A., 1996. Salt-induced inhibition of phosphorus transport in lettuce plants. Physiologia Plantarum 97(1):118-122.

Melgar, J.C., Benlloch, M., Fernández-Escobar, R., 2006. Calcium increases sodium exclusion in olive plants. Scientia Horticulturae 109(3): 303-305.

Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell and Environment 25(2): 239-250.

Olsen, S.R., Sommers, E.L., 1982. Phosphorus. In: Methods of soil analysis, Part 2, Chemical and microbiological properties, Second Edition. Number 9, Page,  A.L., Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp.403-448.

Peuke, A.D., Glaab, J., Kaiser, W.M., Jeschke, W.D., 1996. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow andmetabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. Journal of Experimental Botany 47(3): 377-385.

Pizer, N.H., 1967. Some advisory aspect: Soil potassium and magnesium. Technical Bulletin No. 14, 184p.

Rubinigg, M., Posthumus, F., Ferschke, M., Elzenga, J.T.M., Stulen, I., 2003. Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant and Soil 250 (2): 201-213.

Schachtman, D.P., Reid, R.J., Ayling, S.M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology 116(2): 447-453.

Soil Survey Staff, 1951. Soil survey manual. Agricultural Research Administration, United States Department of Agriculture, Agricultural Handbook No.18, Washington, USA. 503p.

Tattini, M., Bertoni, P., Caselli, S., 1992. Genotypic responses of olive plants to sodium chloride. Journal of Plant Nutrition 15(9): 1467-1485.

Thun, R., Hermann, R., Knickmann, E., 1955. Die Untersuchung von Boden. Volume 1 of Handbuch der landwirtschaftlichen Versuchs und Untersuchungsmethodik. Neumann Verlag. Radelbeul und Berlin, Deutschland. 271p. [in German]

U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Agricultural Handbook No. 60, Washington, USA. 160p.

Westerman, R.L., 1990. Soil testing and plant analysis. Soil Science Society of America (SSAA) Book Series, Vol. 3, Issue 3. SSSA Publications, Madison, Wisconsin, USA. 784p.



Eurasian Journal of Soil Science