Eurasian Journal of Soil Science

Volume 4, Issue 4, Oct 2015, Pages 272 - 278
DOI: 10.18393/ejss.2015.4.272-278
Stable URL: http://ejss.fess.org/10.18393/ejss.2015.4.272-278
Copyright © 2015 The authors and Federation of Eurasian Soil Science Societies



Carbon and important macroelements of Terric Histosol after 12 years renaturalization

X

Article first published online: 03 May 2015 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 1383 | 2783

Amaleviciute,K., Liaudanskiene,I., Slepetiene,A., Slepetys,J., Jokubauskaite,I., Volungevicius,J., 2015. Carbon and important macroelements of Terric Histosol after 12 years renaturalization. Eurasian J Soil Sci 4(4):272 - 278. DOI : 10.18393/ejss.2015.4.272-278
Amaleviciute,K.,Liaudanskiene,I.Slepetiene,A.Slepetys,J.Jokubauskaite,I.,& Volungevicius,J. Carbon and important macroelements of Terric Histosol after 12 years renaturalization Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.4.272-278
Amaleviciute,K.,Liaudanskiene,I.Slepetiene,A.Slepetys,J.Jokubauskaite,I., and ,Volungevicius,J."Carbon and important macroelements of Terric Histosol after 12 years renaturalization" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.4.272-278
Amaleviciute,K.,Liaudanskiene,I.Slepetiene,A.Slepetys,J.Jokubauskaite,I., and ,Volungevicius,J. "Carbon and important macroelements of Terric Histosol after 12 years renaturalization" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.4.272-278
K,Amaleviciute.I,Liaudanskiene.A,Slepetiene.J,Slepetys.I,Jokubauskaite.J,Volungevicius "Carbon and important macroelements of Terric Histosol after 12 years renaturalization" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.2015.4.272-278
Amaleviciute,Kristina ;Liaudanskiene,Inga ;Slepetiene,Alvyra ;Slepetys,Jonas ;Jokubauskaite,Ieva ;Volungevicius,Jonas Carbon and important macroelements of Terric Histosol after 12 years renaturalization. Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.2015.4.272-278

How to cite

Amaleviciute, K., Liaudanskiene, I., Slepetiene, A., Slepetys, J., Jokubauskaite, I., Volungevicius, J., 2015. Carbon and important macroelements of Terric Histosol after 12 years renaturalization. Eurasian J. Soil Sci. 4(4): 272 - 278. DOI : 10.18393/ejss.2015.4.272-278

Author information

Kristina Amaleviciute , Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Lithuania
Inga Liaudanskiene , Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Lithuania
Alvyra Slepetiene , Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Lithuania
Jonas Slepetys , Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Lithuania
Ieva Jokubauskaite , Vezaiciai Branch of the LRCAF, Vezaiciai, Lithuania
Jonas Volungevicius , Vilnius University, Faculty of Natural Sciences, Vilnius, Lithuania

Publication information

Issue published online: 01 Oct 2015
Article first published online : 03 May 2015
Manuscript Accepted : 30 Apr 2015
Manuscript Received: 25 Feb 2015
DOI: 10.18393/ejss.2015.4.272-278
Stable URL: http://ejss.fesss.org/10.18393/ejss.2015.4.272-278

Abstract

The aim of this study was to determine the chemical properties of peat soil depending on changes in land-use. The Terric Histosol (HSs) was investigated in this research, and the treatments of former different land-use in Radviliškis site. Chemical analyses were carried out at the Chemical Research Laboratory of LRCAF. After 12 years since the end of field experiment the differences in soil chemical composition remained still between treatments of differently used peat soil. Due to mineralization, the content of soil organic matter (SOM) and SOC respectively decreased, the largest amounts of SOC are stored in the upper soil layer of perennial grasses fertilized with NPK (NPK), there was the highest yield of biomass; and accordingly, the lowest content of SOC – in soil of un-used peat (UU). The distribution of total N and P in profile of Terric Histosol is directly related to the vertical gradient of mineralization intensity; higher amounts of N and P have been accumulated where mineralization was more intense. The distribution of total K is related to land-use of Terric Histosol, whereas the biggest quantity of total K was established in arable land which has been fertilized with mineral fertilisers.

Keywords

Terric Histosol, peat soil, renaturalization, organic carbon, macroelements of soil

Corresponding author

References

Aitkenhead, J.A., Hope, D., Billett, M.F. 1999. The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrological Processes 13: 1289–1302.

Alberti, G., Leronni, V., Piazzi, M., Petrella, F., Cairata, P., Peressotti, A., Piussi, P., Valentini, R., Cristina, L., La Mantia, T., Novara, A., Rühl, J., 2001. Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy. Regional Environmental Change 11 (4): 917–924.

Amalevičiūtė, K., Šlepetienė, A., Liaudanskienė, I., Šlepetys, J., 2013. Carbon sustainability as influenced by peaty soil use. Proceedings of the 16th Conference for Junior Researches “Science – Future of Lithuania“, Vilnius, p. 5–9.

Amalevičiūtė, K., Šlepetienė, A., Liaudanskienė, I., Šlepetys, J., 2014. Chemical composition of peat bog soil and its influencing factors. Žemės ūkio mokslai 24 (1): 1–8 (in Lithuanian)

Armolaitis, K., Žėkaitė, V., Aleinikovienė, J., Česnulevičienė, R., 2011. Renaturalization of Arenosols in the land afforested with Scot pine (Pinus sylvestrs L.) and abandoned arable land. Zemdirbyste-Agriculture 98 (3): 275–282.

Gal, A., Tony, J.V., Erika, M., Eileen, J.K., William, W.M., 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil and Tillage Research 96: 42–51.

Gong, W., Yan, X.Y., Wang, J.Y., Hu, T.X., Gong, Y.B. 2009. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain. Plant and Soil 314: 67–76.

Jagadamma, S., Lal, R., Hoeft, R.G., Nafziger, E.D., Adee, E.A., 2007. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil and Tillage Research 95: 348–356.

Kolář, L., Kužel, S., Horáček, J., Čechová, V., Borová-Batt, J., Peterka, J., 2009. Labile fractions of soil organic matter, their quantity and quality. Plant, Soil and Environment 55 (6): 245–251

Kosmas, C., Gerontidis, S.T., Marathianou, M., 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena 40: 51–68.

Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology 30: 207 – 222.

La Mantia, T., Oddo, G., Rühl, J., Furnari, G., Scalenghe, R., 2007. Variation of soil carbon stocks during the renaturation of old fields: the case study of the Pantelleria Island, Italy. Forest@ 4 (1): 102–109.

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627.

Lietuvos dirvožemių klasifikacija, 2001. [Clasification of the soils of Lithuania] / compiled by Buivydaitė V.V., Vaičys M., Juodis J. 139 p. (in Lithuanian)

Marcinkonis, S., 2007. Renaturalization of arable land: effect on agrochemical parameters of soil quality. Žemės ūkio mokslai, 14 (2): 18–22 (in Lithuanian)

Marschner, B., 1999. The sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils. Journal of Plant Nutrition and Soil Science 162: 1–14 (in German)

Nikitin, B.A., 1999. Methods for soil humus determination. AgroChemistry 3(2): 156–158

Petraitytė, E., Svirskienė, A., Šlepetienė, A. 2003. Changes in vegetation and soil as affected by different use of a peaty-bog soil. Žemdirbystė. Mokslo darbai 83 (3): 144–158 (in Lithuanian)

Ponomareva, V.V., Plotnikova, T.A., 1980. Humus and Soil Formation. Nauka, Leningrad (in Russian).

Popov, A.I., Rusakov, A.V., Nadporozhskaja, M.A., Yakovleva, V.V., 2004. The use of the chemodestruction fractionating for the estimation of quantitative – qualitative composition of soil organic matter. Humus and soil-forming: collection of scientific works of St. Petersburg State Agrarian University, 63–72 (in Russian)

Purakayastha, T.J., Rudrappa, L., Singh, D., Swarup, A., Bhadraray, S., 2008. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system. Geoderma 144: 370–378.

Rabenhorst, M.C., Swanson, D., 2000. Histosols. CRC Press, Boca Raton, FL. 183–209.

Satrio, E.A., Gandaseca, S., Ahmed, O.H., Majid, N.M.Ab., 2009. Effect of logging operation on soil carbon storage of a tropical peat swamp forest. American Journal of Environmental Sciences 5(6): 748–752.

Šlepetienė, A., Šlepetys, J., Liaudanskienė, I., 2006. Investigation of organic matter status as an impor¬tant indicator of anthropogenic impact for the es¬timation of Terric Histosol quality. Ekologija 2: 51–58

Šlepetienė, A., Šlepetys, J., Liaudanskienė, I., 2010. Chemical composition of differently used Terric Histosol. Zemdirbystė-Agriculture 97(2): 25–32

Smith, C.K., Munson, A.D., Coyea, M.R., 1998. Nitrogen and phosphorus release from humus and mineral soil under black spruce forests in central Quebec. Soil Biology and Biochemistry 30:1491–1500.

Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, Wiley. NewYork. pp172–194.

Strack, M., Zuback, Y.C.A., 2013. Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10: 2885–2896.

Szabo, F., Zele, E., Polgar, J.P., 1999. Study on peat soil pastures for sustainable development of beef cattle farming. Livestock Pro Science 61(2-3): 253–260.

Szajdak, L., Maryganova, V., Meysner, T., Tychinskaja, L., 2002. Effect of shelterbelt on two kinds of soils on the transformation of organic matter. Environment International 28: 383–392.

Tarakanovas, P., Raudonius, S., 2003. Agronominių tyrimų duomenų statistinė analizė, taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo SELEKCIJA ir IRRISTAT. Akademija, Kauno r., 58 p. (in Lithuanian)

Van Rompaey, A.J.J., Govers, G., Van Hecke, E., Jacobs, K., 2001. The impacts of land use policy on the soil erosion risk: a case study in central Belgium. Agriculture, Ecosystems and Environment 83: 83–94.

World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. p.191, Rome

Zavarzina, D.G., Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A Bonch Osmolovskaya, E.A., 2000. Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. International Journal of Systematic and Evolutionary Microbiology 50: 1287–1295.

Zingore, S., Manyame, C., Nyamugafata, P., Giller, K.E., 2005. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. European Journal of Soil Science 56: 727–736.

Abstract
The aim of this study was to determine the chemical properties of peat soil depending on changes in land-use. The Terric Histosol (HSs) was investigated in this research, and the treatments of former different land-use in Radviliškis site. Chemical analyses were carried out at the Chemical Research Laboratory of LRCAF. After 12 years since the end of field experiment the differences in soil chemical composition remained still between treatments of differently used peat soil. Due to mineralization, the content of soil organic matter (SOM) and SOC respectively decreased, the largest amounts of SOC are stored in the upper soil layer of perennial grasses fertilized with NPK (NPK), there was the highest yield of biomass; and accordingly, the lowest content of SOC – in soil of un-used peat (UU). The distribution of total N and P in profile of Terric Histosol is directly related to the vertical gradient of mineralization intensity; higher amounts of N and P have been accumulated where mineralization was more intense. The distribution of total K is related to land-use of Terric Histosol, whereas the biggest quantity of total K was established in arable land which has been fertilized with mineral fertilisers.

Keywords: Terric Histosol, peat soil, renaturalization, organic carbon, macroelements of soil

References

Aitkenhead, J.A., Hope, D., Billett, M.F. 1999. The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrological Processes 13: 1289–1302.

Alberti, G., Leronni, V., Piazzi, M., Petrella, F., Cairata, P., Peressotti, A., Piussi, P., Valentini, R., Cristina, L., La Mantia, T., Novara, A., Rühl, J., 2001. Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy. Regional Environmental Change 11 (4): 917–924.

Amalevičiūtė, K., Šlepetienė, A., Liaudanskienė, I., Šlepetys, J., 2013. Carbon sustainability as influenced by peaty soil use. Proceedings of the 16th Conference for Junior Researches “Science – Future of Lithuania“, Vilnius, p. 5–9.

Amalevičiūtė, K., Šlepetienė, A., Liaudanskienė, I., Šlepetys, J., 2014. Chemical composition of peat bog soil and its influencing factors. Žemės ūkio mokslai 24 (1): 1–8 (in Lithuanian)

Armolaitis, K., Žėkaitė, V., Aleinikovienė, J., Česnulevičienė, R., 2011. Renaturalization of Arenosols in the land afforested with Scot pine (Pinus sylvestrs L.) and abandoned arable land. Zemdirbyste-Agriculture 98 (3): 275–282.

Gal, A., Tony, J.V., Erika, M., Eileen, J.K., William, W.M., 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil and Tillage Research 96: 42–51.

Gong, W., Yan, X.Y., Wang, J.Y., Hu, T.X., Gong, Y.B. 2009. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain. Plant and Soil 314: 67–76.

Jagadamma, S., Lal, R., Hoeft, R.G., Nafziger, E.D., Adee, E.A., 2007. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil and Tillage Research 95: 348–356.

Kolář, L., Kužel, S., Horáček, J., Čechová, V., Borová-Batt, J., Peterka, J., 2009. Labile fractions of soil organic matter, their quantity and quality. Plant, Soil and Environment 55 (6): 245–251

Kosmas, C., Gerontidis, S.T., Marathianou, M., 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena 40: 51–68.

Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology 30: 207 – 222.

La Mantia, T., Oddo, G., Rühl, J., Furnari, G., Scalenghe, R., 2007. Variation of soil carbon stocks during the renaturation of old fields: the case study of the Pantelleria Island, Italy. Forest@ 4 (1): 102–109.

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627.

Lietuvos dirvožemių klasifikacija, 2001. [Clasification of the soils of Lithuania] / compiled by Buivydaitė V.V., Vaičys M., Juodis J. 139 p. (in Lithuanian)

Marcinkonis, S., 2007. Renaturalization of arable land: effect on agrochemical parameters of soil quality. Žemės ūkio mokslai, 14 (2): 18–22 (in Lithuanian)

Marschner, B., 1999. The sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils. Journal of Plant Nutrition and Soil Science 162: 1–14 (in German)

Nikitin, B.A., 1999. Methods for soil humus determination. AgroChemistry 3(2): 156–158

Petraitytė, E., Svirskienė, A., Šlepetienė, A. 2003. Changes in vegetation and soil as affected by different use of a peaty-bog soil. Žemdirbystė. Mokslo darbai 83 (3): 144–158 (in Lithuanian)

Ponomareva, V.V., Plotnikova, T.A., 1980. Humus and Soil Formation. Nauka, Leningrad (in Russian).

Popov, A.I., Rusakov, A.V., Nadporozhskaja, M.A., Yakovleva, V.V., 2004. The use of the chemodestruction fractionating for the estimation of quantitative – qualitative composition of soil organic matter. Humus and soil-forming: collection of scientific works of St. Petersburg State Agrarian University, 63–72 (in Russian)

Purakayastha, T.J., Rudrappa, L., Singh, D., Swarup, A., Bhadraray, S., 2008. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system. Geoderma 144: 370–378.

Rabenhorst, M.C., Swanson, D., 2000. Histosols. CRC Press, Boca Raton, FL. 183–209.

Satrio, E.A., Gandaseca, S., Ahmed, O.H., Majid, N.M.Ab., 2009. Effect of logging operation on soil carbon storage of a tropical peat swamp forest. American Journal of Environmental Sciences 5(6): 748–752.

Šlepetienė, A., Šlepetys, J., Liaudanskienė, I., 2006. Investigation of organic matter status as an impor¬tant indicator of anthropogenic impact for the es¬timation of Terric Histosol quality. Ekologija 2: 51–58

Šlepetienė, A., Šlepetys, J., Liaudanskienė, I., 2010. Chemical composition of differently used Terric Histosol. Zemdirbystė-Agriculture 97(2): 25–32

Smith, C.K., Munson, A.D., Coyea, M.R., 1998. Nitrogen and phosphorus release from humus and mineral soil under black spruce forests in central Quebec. Soil Biology and Biochemistry 30:1491–1500.

Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, Wiley. NewYork. pp172–194.

Strack, M., Zuback, Y.C.A., 2013. Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10: 2885–2896.

Szabo, F., Zele, E., Polgar, J.P., 1999. Study on peat soil pastures for sustainable development of beef cattle farming. Livestock Pro Science 61(2-3): 253–260.

Szajdak, L., Maryganova, V., Meysner, T., Tychinskaja, L., 2002. Effect of shelterbelt on two kinds of soils on the transformation of organic matter. Environment International 28: 383–392.

Tarakanovas, P., Raudonius, S., 2003. Agronominių tyrimų duomenų statistinė analizė, taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo SELEKCIJA ir IRRISTAT. Akademija, Kauno r., 58 p. (in Lithuanian)

Van Rompaey, A.J.J., Govers, G., Van Hecke, E., Jacobs, K., 2001. The impacts of land use policy on the soil erosion risk: a case study in central Belgium. Agriculture, Ecosystems and Environment 83: 83–94.

World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. p.191, Rome

Zavarzina, D.G., Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A Bonch Osmolovskaya, E.A., 2000. Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. International Journal of Systematic and Evolutionary Microbiology 50: 1287–1295.

Zingore, S., Manyame, C., Nyamugafata, P., Giller, K.E., 2005. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. European Journal of Soil Science 56: 727–736.



Eurasian Journal of Soil Science