Eurasian Journal of Soil Science

Volume 4, Issue 3, Jul 2015, Pages 211 - 219
DOI: 10.18393/ejss.2015.3.211-219
Stable URL: http://ejss.fess.org/10.18393/ejss.2015.3.211-219
Copyright © 2015 The authors and Federation of Eurasian Soil Science Societies



Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method

X

Article first published online: 03 Mar 2015 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 1044 | 2776

Meshalkina,J., Yaroslavtsev,A., Mazirov,I., Samardzic,M., 2015. Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method. Eurasian J Soil Sci 4(3):211 - 219. DOI : 10.18393/ejss.2015.3.211-219
Meshalkina,J.,Yaroslavtsev,A.Mazirov,I.,& Samardzic,M. Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.211-219
Meshalkina,J.,Yaroslavtsev,A.Mazirov,I., and ,Samardzic,M."Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.211-219
Meshalkina,J.,Yaroslavtsev,A.Mazirov,I., and ,Samardzic,M. "Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.211-219
J,Meshalkina.A,Yaroslavtsev.I,Mazirov.M,Samardzic "Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.2015.3.211-219
Meshalkina,Joulia ;Yaroslavtsev,Alexis ;Mazirov,Ilya ;Samardzic,Miljan Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method. Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.2015.3.211-219

How to cite

Meshalkina, J., Yaroslavtsev, A., Mazirov, I., Samardzic, M., 2015. Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method. Eurasian J. Soil Sci. 4(3): 211 - 219. DOI : 10.18393/ejss.2015.3.211-219

Author information

Joulia Meshalkina , Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia & Russian Timiryazev State Agrarian University, Laboratory of Agroecological Monitoring, Ecosystem Modeling and Prediction, Moscow, Russia
Alexis Yaroslavtsev , Russian Timiryazev State Agrarian University, Laboratory of Agroecological Monitoring, Ecosystem Modeling and Prediction, Moscow, Russia
Ilya Mazirov , Russian Timiryazev State Agrarian University, Laboratory of Agroecological Monitoring, Ecosystem Modeling and Prediction, Moscow, Russia
Miljan Samardzic , Russian Timiryazev State Agrarian University, Laboratory of Agroecological Monitoring, Ecosystem Modeling and Prediction, Moscow, Russia

Publication information

Issue published online: 01 Jul 2015
Article first published online : 03 Mar 2015
Manuscript Accepted : 01 Jan 1970
Manuscript Received: 17 Sep 2014
DOI: 10.18393/ejss.2015.3.211-219
Stable URL: http://ejss.fesss.org/10.18393/ejss.2015.3.211-219

Abstract

The eddy covariance (EC) technique as a powerful statistics-based method of measurement and calculation the vertical turbulent fluxes of greenhouses gases within atmospheric boundary layers provides the continuous, long-term flux information integrated at the ecosystem scale. An attractive way to compare the agricultural practices influences on GHG fluxes is to divide a crop area into subplots managed in different ways. The research has been carried out in the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (RTSAU, Moscow) in 2013 under the support of RF Government grant # 11.G34.31.0079, EU grant # 603542 LUС4С (7FP) and RF Ministry of education and science grant # 14-120-14-4266-ScSh. Arable Umbric Albeluvisols have around 1% of SOC, 5.4 pH (KCl) and NPK medium-enhanced contents in sandy loam topsoil. The CO2 flux seasonal monitoring has been done by two eddy covariance stations located at the distance of 108 m. The LI-COR instrumental equipment was the same for the both stations. The stations differ only by current crop version: barley or vetch and oats. At both sites, diurnal patterns of NEE among different months were very similar in shape but varied slightly in amplitude. NEE values were about zero during spring time. CO2 fluxes have been intensified after crop emerging from values of 3 to 7 µmol/s∙m2 for emission, and from 5 to 20 µmol/s∙m2 for sink. Stabilization of the fluxes has come at achieving plants height of 10-12 cm. Average NEE was negative only in June and July. Maximum uptake was observed in June with average values about 8 µmol CO2 m−2 s−1. Although different kind of crops were planted on the fields A and B, GPP dynamics was quite similar for both sites: after reaching the peak values at the mid of June, GPP decreased from 4 to 0.5 g C CO2 m-2 d-1 at the end of July. The difference in crops harvesting time that was equal two weeks did not significantly influence the daily GPP patterns. Cumulative assimilation of CO2 at the end of the growing season was about 150 g C m−2 for both sites. So the difference in NEE was the consequence of essentially higher respiration rates in case of vetch and oats (about 350 g C m−2) comparing to barley (250 g C m−2) that needs additional research. The results have shown high daily and seasonal dynamic of CO2 emission too as a result of different and contrasted conditions: crop type, crop development stage, soil moisture and air temperature. Obtained unique for Russian agriculture data are useful for land-use practices environmental assessment, for soil organic carbon dynamics analysis and agroecological evaluation.

Keywords

Agroecology, soil functions, greenhouse gases, eddy fluxes, ecological monitoring, agroecosystems

Corresponding author

References

Arroyo-Rodríguez, V., Mandujano, S., 2006. The importance of tropical rain forest fragments to the conservation of plant species diversity in Los Tuxtlas, Mexico. Biodiversity and Conservation 15:4159–4179

Aubinet, M., T. Vesala, D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer Atmospheric Sciences, Springer Verlag, 438 pp.

Baldeck, C., Harms, K., Yavitt, J., John, R., Turner, B., Valencia, R., Navarrete, H., Davies, S., Chuyong, G., Kenfack, D., Thomas, D., Madawala, S., Gunatilleke, N., Gunatilleke, S., Bunyyavejchewin, S., Kiratiprayoon, S., Yaacob, A., Nur Supardi, M., Dalling, J. 2012. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B. Biological Sciences 280: 25-32.

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbondioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9: 479–492.

Bhagwat, S., Willis, K., Birks, J., Whittaker. 2008. Agroforestry: a refuge for tropical biodiversity? Trends in Ecology and Evoloution 23(5): 261-267.

Brenes-Arguedas, T., Ríos, M., Rivas-Torres, G., Blundo, C., Coley, P., Kursar, T. 2008. The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos 117: 1453-1460.

Brown, C., Burslem, D., Bao, L., Brockelman, W., Cao, M., Chang, L., Dattaraja, H., Davies, S., Gunattilleke, C., Gunatileke, I., Huang, J., Kassim, A., LaFrankie, J., Lian, J., Lin, L., Ma, K., Mi, X., Nathalang, A., Noor, S., Ong, P., Sukumar, R., Su, S., Sun, I., Suresh, H., Tan, s., Thompson, J., Uriarte, M., Valencia, R., Yap, S., Ye, W., Law, R. 2013. Multispecies coexistence of trees in tropical forests; spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings of the Royal Society B. Biological Sciences 280: (1764): 0502.

Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: a Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, Lincoln, USA, 331 pp.

Celedón, H. 2006. Impacto del sistema de roza, tumba y quema sobre las características de tres unidades de suelo en la selva Lacandona de Chiapas. Tesis de Maestría en Ciencias Biológicas (Ecología y ciencias ambientales). Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México.

Clinebell, R., Phillips, O., Gentry, A., Stark, N., Zuuring, H. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and conservation 4:56-90

Daniel, T.W., Helms, J.A., Baker, F.S., 1979. Principles of Silviculture, second edition. McGraw-Hill, Inc., New York

Falge, E., Baldocchi, D., Olson, R.J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, Fan, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107: 43–69.

Foken, T., 2003. Angewandte Meteorologie, Mikrometeorologische Methoden, Springer, 289 pp.

Gentry, A. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1-34.

Gravel, D., Guichard, F., Hochberg, M. 2011. Species coexistence in a variable world. Ecology Letters 14: 828-839.

Huston, M. 1979. A General hypothesis of species diversity. The American Naturalist 113(1): 81-101

John, R., Dalling, J., Harms, K., Yavitt, J., Stallard, R., Mirabello, M., Hubbell, s., Valencia, R., Navarrete, H., Vallejo, M., Foster, R. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences 104; 864–869.

Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid, 2004, 'A Simple Parameterisation for Flux Footprint Predictions', Boundary-Layer Meteorology, 112, 503-523.

Magurran, A. 2004 Measuring biological diversity. Blackwell Publishing Ed. Australia. 215p.

Moncrieff, J.B., Massheder, J.M., Verhoef, A., Elbers, J, Heutsunkveld,B, H., Scott, S., de Bruin, H., Kabat, P. Soegaard,H. and Jarvis, P.G.,1997. A system to measure surface fluxes of energy, momentum and carbon dioxide. Journal of Hydrology 188-189: 589-611.

Paoli , G., Urran, L., Zak, D. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: Evidence for niche partitioning by tropical rain forest trees. Journal of Ecology 94: 157 – 170.

Peña-Claros, M., Poorter, L., Alarcón, A., Blate, G., Choque, U., Fredericksen, T., Justiano, M., Leaño, C., Licona, J., Pariota, W., Putz, F., Quevedo, L., Toledo, M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44(3): 276–283.

Phillips, O., Nuñez-Vargas, P., Monte-Agudo, A., Peña-Cruz, A., Chuspe-Zans, M., Galiano-Sánchez, W., Yli-Halla, M., Rose, S. 2003. Habitat association among Amazonian tree species: A landscape-scale approach. Journal of Ecology 91: 757–775.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11 (9): 1424-1439.

Servicio Geológico Mexicano SGM. 1997. Carta Geológico-Minera: Las Margaritas. Chiapas. E15-12 D5-3.

Servicio Meteorológico Nacional SMN. 2013. Normales climatológicas Estado de Chiapas, Estación Lacantún. Periodo 1951-2010.

Siebe, C., Martínez-Ramos, M., Segura-Warnholtz, G., Rodríguez-Velázquez, J., Sánchez-Beltrán, S. 1995. Soil and vegetation patterns in the tropical rainforest at Chajul Southeast México. En: D. Sigmarangkir (ed), Proceedings of the International Congress on Soil of Tropical Forest Ecosystems 3rd Conference on Forest Soils (ISSS-AISS-IBG). Mulawarman University Press, Indonesia. 40-58.

Siebe, Ch., Jahn, R., Stahr, K. 2006. Manual para la descripción y evaluación ecológica de suelos en el campo. Segunda Ed. Sociedad Mexicana de la Ciencia del Suelo. Publicación especial No. 4. México 57 p.

Silva, D., Batalha, M., Cianciaruso, M. 2013. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna. Acta Botanica Brasilica 27(3): 490-497.

Sollins, P. 1998. Factors influencing species composition in tropical lowland rain forest: Does soil matter? Ecology 79 (1): 23-30.

Swaine, M. 1996. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology 84 (39): 419-428.

Toledo, M., Poorter, L., Peña-Claros, M., Alarcón, A., Balcázar, J., Chuviña, J., Leaño, C., Licona, J., Steege, H., Bongers, F. 2011. Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica 43(4): 405-413.

Wang, G., Klinka, K. 1996. Use of synoptic variables in predicting white spruce site index. Forest Ecology and Management 80: 95-105

Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapor transport. Quarterly Journal of the Royal Meteorological Society 106: 85–100.

Wright, J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1-14.

Zinck, J. 1988. Physiography and Soils. Soil Survey Course. ITC. Enschede, Holanda, 156 pp.

Zinck, J. 2012. Geopedología. Elementos de geomorfología para estudios de suelos y de riesgos naturales. ITC .Faculty of Geo-Information Science and Earth Observation of the University of Twente, The Netherlands.

Zinck, J., Valenzuela, C. 1990. Soil geographic database: structure and application examples. ITC Journal 3: 270-294.

Abstract
The eddy covariance (EC) technique as a powerful statistics-based method of measurement and calculation the vertical turbulent fluxes of greenhouses gases within atmospheric boundary layers provides the continuous, long-term flux information integrated at the ecosystem scale. An attractive way to compare the agricultural practices influences on GHG fluxes is to divide a crop area into subplots managed in different ways. The research has been carried out in the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (RTSAU, Moscow) in 2013 under the support of RF Government grant # 11.G34.31.0079, EU grant # 603542 LUС4С (7FP) and RF Ministry of education and science grant # 14-120-14-4266-ScSh. Arable Umbric Albeluvisols have around 1% of SOC, 5.4 pH (KCl) and NPK medium-enhanced contents in sandy loam topsoil. The CO2 flux seasonal monitoring has been done by two eddy covariance stations located at the distance of 108 m. The LI-COR instrumental equipment was the same for the both stations. The stations differ only by current crop version: barley or vetch and oats. At both sites, diurnal patterns of NEE among different months were very similar in shape but varied slightly in amplitude. NEE values were about zero during spring time. CO2 fluxes have been intensified after crop emerging from values of 3 to 7 µmol/s∙m2 for emission, and from 5 to 20 µmol/s∙m2 for sink. Stabilization of the fluxes has come at achieving plants height of 10-12 cm. Average NEE was negative only in June and July. Maximum uptake was observed in June with average values about 8 µmol CO2 m−2 s−1. Although different kind of crops were planted on the fields A and B,  GPP dynamics was quite similar for both sites:  after reaching the peak values at the mid of June, GPP decreased from 4 to 0.5 g C CO2 m-2 d-1 at the end of July. The difference in crops harvesting time that was equal two weeks did not significantly influence the daily GPP patterns. Cumulative assimilation of CO2 at the end of the growing season was about 150 g C m−2 for both sites. So the difference in NEE was the consequence of essentially higher respiration rates in case of vetch and oats (about 350 g C m−2) comparing to barley (250 g C m−2) that needs additional research. The results have shown high daily and seasonal dynamic of CO2 emission too as a result of different and contrasted conditions: crop type, crop development stage, soil moisture and air temperature. Obtained unique for Russian agriculture data are useful for land-use practices environmental assessment, for soil organic carbon dynamics analysis and agroecological evaluation.

Keywords: Agroecology, soil functions, greenhouse gases, eddy fluxes, ecological monitoring, agroecosystems

References

Arroyo-Rodríguez, V., Mandujano, S., 2006. The importance of tropical rain forest fragments to the conservation of plant species diversity in Los Tuxtlas, Mexico. Biodiversity and Conservation 15:4159–4179

Aubinet, M., T. Vesala, D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer Atmospheric Sciences, Springer Verlag, 438 pp.

Baldeck, C., Harms, K., Yavitt, J., John, R., Turner, B., Valencia, R., Navarrete, H., Davies, S., Chuyong, G., Kenfack, D., Thomas, D., Madawala, S., Gunatilleke, N., Gunatilleke, S., Bunyyavejchewin, S., Kiratiprayoon, S., Yaacob, A., Nur Supardi, M., Dalling, J. 2012. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B. Biological Sciences 280: 25-32.

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbondioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9: 479–492.

Bhagwat, S., Willis, K., Birks, J., Whittaker. 2008. Agroforestry: a refuge for tropical biodiversity? Trends in Ecology and Evoloution 23(5): 261-267.

Brenes-Arguedas, T., Ríos, M., Rivas-Torres, G., Blundo, C., Coley, P., Kursar, T. 2008. The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos 117: 1453-1460.

Brown, C., Burslem, D., Bao, L., Brockelman, W., Cao, M., Chang, L., Dattaraja, H., Davies, S., Gunattilleke, C., Gunatileke, I., Huang, J., Kassim, A., LaFrankie, J., Lian, J., Lin, L., Ma, K., Mi, X., Nathalang, A., Noor, S., Ong, P., Sukumar, R., Su, S., Sun, I., Suresh, H., Tan, s., Thompson, J., Uriarte, M., Valencia, R., Yap, S., Ye, W., Law, R. 2013. Multispecies coexistence of trees in tropical forests; spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings of the Royal Society B. Biological Sciences 280: (1764): 0502.

Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: a Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, Lincoln, USA, 331 pp.

Celedón, H. 2006. Impacto del sistema de roza, tumba y quema sobre las características de tres unidades de suelo en la selva Lacandona de Chiapas. Tesis de Maestría en Ciencias Biológicas (Ecología y ciencias ambientales). Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México.

Clinebell, R., Phillips, O., Gentry, A., Stark, N., Zuuring, H. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and conservation 4:56-90

Daniel, T.W., Helms, J.A., Baker, F.S., 1979. Principles of Silviculture, second edition. McGraw-Hill, Inc., New York

Falge, E., Baldocchi, D., Olson, R.J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, Fan, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107: 43–69.

Foken, T., 2003. Angewandte Meteorologie, Mikrometeorologische Methoden, Springer, 289 pp.

Gentry, A. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1-34.

Gravel, D., Guichard, F., Hochberg, M. 2011. Species coexistence in a variable world. Ecology Letters 14: 828-839.

Huston, M. 1979. A General hypothesis of species diversity. The American Naturalist 113(1): 81-101

John, R., Dalling, J., Harms, K., Yavitt, J., Stallard, R., Mirabello, M., Hubbell, s., Valencia, R., Navarrete, H., Vallejo, M., Foster, R. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences 104; 864–869.

Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid, 2004, 'A Simple Parameterisation for Flux Footprint Predictions', Boundary-Layer Meteorology, 112, 503-523.

Magurran, A. 2004 Measuring biological diversity. Blackwell Publishing Ed. Australia. 215p.

Moncrieff, J.B., Massheder, J.M., Verhoef, A., Elbers, J, Heutsunkveld,B, H., Scott, S., de Bruin, H., Kabat, P. Soegaard,H. and Jarvis, P.G.,1997. A system to measure surface fluxes of energy, momentum and carbon dioxide. Journal of Hydrology 188-189: 589-611.

Paoli , G., Urran, L., Zak, D. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: Evidence for niche partitioning by tropical rain forest trees. Journal of Ecology 94: 157 – 170.

Peña-Claros, M., Poorter, L., Alarcón, A., Blate, G., Choque, U., Fredericksen, T., Justiano, M., Leaño, C., Licona, J., Pariota, W., Putz, F., Quevedo, L., Toledo, M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44(3): 276–283.

Phillips, O., Nuñez-Vargas, P., Monte-Agudo, A., Peña-Cruz, A., Chuspe-Zans, M., Galiano-Sánchez, W., Yli-Halla, M., Rose, S. 2003. Habitat association among Amazonian tree species: A landscape-scale approach. Journal of Ecology 91: 757–775.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11 (9): 1424-1439.

Servicio Geológico Mexicano SGM. 1997. Carta Geológico-Minera: Las Margaritas. Chiapas. E15-12 D5-3.

Servicio Meteorológico Nacional SMN. 2013. Normales climatológicas Estado de Chiapas, Estación Lacantún. Periodo 1951-2010.

Siebe, C., Martínez-Ramos, M., Segura-Warnholtz, G., Rodríguez-Velázquez, J., Sánchez-Beltrán, S. 1995. Soil and vegetation patterns in the tropical rainforest at Chajul Southeast México. En: D. Sigmarangkir (ed), Proceedings of the International Congress on Soil of Tropical Forest Ecosystems 3rd Conference on Forest Soils (ISSS-AISS-IBG). Mulawarman University Press, Indonesia. 40-58.

Siebe, Ch., Jahn, R., Stahr, K. 2006. Manual para la descripción y evaluación ecológica de suelos en el campo. Segunda Ed. Sociedad Mexicana de la Ciencia del Suelo. Publicación especial No. 4. México 57 p.

Silva, D., Batalha, M., Cianciaruso, M. 2013. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna. Acta Botanica Brasilica 27(3): 490-497.

Sollins, P. 1998. Factors influencing species composition in tropical lowland rain forest: Does soil matter? Ecology 79 (1): 23-30.

Swaine, M. 1996. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology 84 (39): 419-428.

Toledo, M., Poorter, L., Peña-Claros, M., Alarcón, A., Balcázar, J., Chuviña, J., Leaño, C., Licona, J., Steege, H., Bongers, F. 2011. Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica 43(4): 405-413.

Wang, G., Klinka, K. 1996. Use of synoptic variables in predicting white spruce site index. Forest Ecology and Management 80: 95-105

Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapor transport. Quarterly Journal of the Royal Meteorological Society 106: 85–100.

Wright, J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1-14.

Zinck, J. 1988. Physiography and Soils. Soil Survey Course. ITC. Enschede, Holanda, 156 pp.

Zinck, J. 2012. Geopedología. Elementos de geomorfología para estudios de suelos y de riesgos naturales. ITC .Faculty of Geo-Information Science and Earth Observation of the University of Twente, The Netherlands.

Zinck, J., Valenzuela, C. 1990. Soil geographic database: structure and application examples. ITC Journal 3: 270-294.



Eurasian Journal of Soil Science