Eurasian Journal of Soil Science

Volume 4, Issue 3, Jul 2015, Pages 169 - 177
DOI: 10.18393/ejss.2015.3.169-177
Stable URL: http://ejss.fess.org/10.18393/ejss.2015.3.169-177
Copyright © 2015 The authors and Federation of Eurasian Soil Science Societies



Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils

X

Article first published online: 12 Feb 2015 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 933 | 2950

Reiss,M., Chifflard,P., 2015. Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils. Eurasian J Soil Sci 4(3):169 - 177. DOI : 10.18393/ejss.2015.3.169-177
Reiss,M.,,& Chifflard,P. Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.169-177
Reiss,M.,, and ,Chifflard,P."Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.169-177
Reiss,M.,, and ,Chifflard,P. "Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.2015.3.169-177
M,Reiss.P,Chifflard "Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.2015.3.169-177
Reiss,Martin ;Chifflard,Peter Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils. Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.2015.3.169-177

How to cite

Reiss, M., Chifflard, P., 2015. Depth function of manganese (Mn) concentration in soil solutions: Hydropedological translocation of trace elements in stratified soils. Eurasian J. Soil Sci. 4(3): 169 - 177. DOI : 10.18393/ejss.2015.3.169-177

Author information

Martin Reiss , University of Marburg, Soil & Water Ecosystems, Marburg, Germany
Peter Chifflard , University of Marburg, Soil & Water Ecosystems, Marburg, Germany

Publication information

Issue published online: 01 Jul 2015
Article first published online : 12 Feb 2015
Manuscript Accepted : 28 Jan 2015
Manuscript Received: 01 Aug 2014
DOI: 10.18393/ejss.2015.3.169-177
Stable URL: http://ejss.fesss.org/10.18393/ejss.2015.3.169-177

Abstract

Periglacial cover beds are an important trigger of slope-water paths in sloped terrain of the mid-latitudes. Most hydropedological studies focus on the quantitative analysis about the interrelation between subsurface layering and runoff processes at the slope scale. In this research we emphasis on a qualitative environmental geochemical analysis of trace elements and dissolved organic carbon in a small forest hydrological study area in the central parts of the subdued mountains of Germany (Location: KrofdorferForst, +50° 41' 3.69", +8° 38' 38.87"). The main objective is to assess the effect of lithological discontinuities of stratified soils within the depth functions of trace elements concentration in soil solutions (soil water and its dissolved and mobile fraction in a vertical distribution). Lorz (2008) show that depth functions of manganese (Mn) are characterized by strong pedogenic dynamics, analysing a shortened sequential extraction of solid soil material. We investigated the hypothesis that lithological discontinuities act like aquicludes. Therefore we expect abrupt changes within the depth function of manganese as a result of such water-blocking effect (= geochemical barriers) as a consequence of mobilization under wet soil conditions. In a preliminary case study we sampled soil solutions from three different plots within a 400m-toposequence. We use in situ trench installed suction lysimeters with ceramic tips (Irrometer Soil Solution Access Tube) to extract soil water samples each 20 cm from top- (10 cm) to subsoil (110 cm). For geochemical element analysis we use an inductively coupled plasma mass spectrometry (ICP-MS). The results: A clear character of abrupt changes within the depth function could be illustrated for most of the plots. For example, at the upper slope plot a contrast of the depth function is from 1013 ppb mean concentration at 50 cm profile depth to 290 ppb mean concentration at 70 cm profile depth (17 month sampling period). To conclude, these results demonstrate that hydrochemical quality and translocation processes of soil solutions determining an interrelation between subsurface layering and run off processes - respectively could be seen as an environmental consequence of it.

Keywords

Pedohydrology, trace elements, periglacial cover beds, hillslope hydrology, geochemical barriers

Corresponding author

References

Amacher, M.C., O’Neill, K.P., 2004. Assessing soil compaction on forest inventory and analysis Phase 3 Field plots using a pocket penetrometer. Research paper RMRS-RP-46WWW. Fort Collins. CO: U.S. Department of Agriculture.Forest Service, Rocky Mountain Research Station.

BGR=Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten. Ed.. 2005.Bodenkundliche Kartieranleitung. Schweizerbart Science Publisher. Hannover.

Chifflard, P., Didszun, J., Zepp, H., 2008. Skalenübergreifende Prozess-Studien zur Abflussbildung in Gebieten mit periglazialen Deckschichten (Sauerland. Deutschland). Grundwasser, 13,27-41.

Chifflard, P.,Kirnbauer, R.,Zepp, H.,Tilch, N.,Didszun, J.,Zillgens, B., Schumann, A.,Uhlenbrook, S., 2010. Tracing run off generation processes through different spatial scales in low and high mountain ranges. International Association of Hydrological Sciences (IAHS)Publications 336: 90-95.

Du Laing, G. 2010. Analysis and fractionation of trace elements in soils. In:Hooda, P.S. (Ed.). Trace elements in soils.Wiley, West Sussex, pp. 53-80.

DWA = Deutsche Vereinigung für Wasserwirtschaft. Abwasser und Abfall. 2008. In situ-Erfassung von Bodenlösung. Merkblatt DWA-M 905. DWA-Regelwerk. DWA. Bad Hennef.

EPA = U.S. Environmental Protection Agency. 1992. Method 1311: Toxicity Characteristic Leaching Procedure. Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf

Fiedler, S., Jungkunst, H. P., Jahn, R., Kleber, M., Sommer,M., Stahr, K. 2002. Linking soil classification and soil dynamics – pedological and ecological perspectives. Journal of Plant Nutrition and Soil Science 165: 517-529.

Führer. H.-W. 1990. Einflüsse des Waldes und waldbauliche Maßnahmen auf Höhe, zeitliche Verteilung und Qualität des Abflusses aus kleinen Einzugsgebieten – Projektstudie im Krofdorfer Buchenforst. Forstwissenschaftliche Fakultät der Universität München und BayerischeForstliche Versuchs- und Forschungsanstalt, München.

Gilkes, R.J., McKenzie, R.M. 1988.Geochemistry and Mineralogy of Manganese in Soils. In: Graham, R.D.,Hannam, R.J.,Uren, N.C. (Eds.). Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht et al., pp.23-35.

Grossmann, J., Udluft, P. 1991. The extraction of soil water by the suction-cup method: a review. European Journal of Soil Science 42: 83-93.

Gurtz. J., Zappa, M., Jasper, K., Lang, L., Verbunt, M., Badoux, A., Vitvar, T. 2003. A comparative study in modelling runoff and its components in two mountainous catchments. Hydrological Processes 17: 297-311.

Kleber, A., Dietze, M.,Terhorst, B. 2013. Sedimantary properties of layers. In:Kleber, A.,Terhorst, B. (Eds.). Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 12-18.

Kleber, A.,Terhorst, B. 2013. Introduction. In: Kleber, A.,Terhorst, B. (Eds.) Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 1-8.

Lorz, C., Heller, K., Kleber, A. 2011. Stratification of the regolith continuum – a key property for processes and functions of landscapes. Zeitschrift für Geomorphologie 55(S3): 277-292.

Lorz, C., Phillips, J.D. 2006.Pedo-ecological consequences of lithological discontinuities in soils – examples from Central Europe. Journal of Plant Nutrition and Soil Science 169: 573–581.

Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R., Kleber, A. 2013. Influence of cover beds on slope hydrology. In: Kleber, A.,Terhorst, B. (Eds.). Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 127-152.

Norvell, W.A. 1988. Inorganic reactions of manganese in soils. In: Graham. R.D., Hannam, R.J.,Uren, N.C. (Eds.). Manganese in Soils and Plants. Kluwer Academic Publishers. Dordrecht et al., pp.37-58.

Ostaszewska, K. 2010. The geochemical landscape concept and its usefulness in physical geography. Miscellanea Geographica 14: 5-12.

Perelman, A.I. 1977. Geochemistry of Elements in the Supergene Zone. Keter Publishing House, Jerusalem.

Reiss, M., Chifflard, P. 2014. Short report: Identifying sources of subsurface flow – A theoretical framework assessing hydrological implications of lithological discontinuities. Open Journal of Modern Hydrology 4:91 - 94

Scherer, J. 2003. Der Waldboden im Pfändergebiet – Zustand und Stoffdynamik. Schriftenreihe Lebensraum Vorarlberg. Band 55. Amt der Vorarlberger Landesregierung, Bregenz.

Schumann, S., Schmalz, B.,Meesenburg, H., Schröder, U. 2010. Status andperspectivesofhydrology in small basins. IHP/HWRP-Berichte 10, Koblenz.

Semmel, A.,Terhorst, B. 2010. The concept of the Pleistocene periglacial cover beds in central Europe: A review. Quaternary International 222: 120-128.

Weihermüller, L., Siemens, J.,Deurer, M., Knoblauch, S., Rupp, H.,Göttlein, A., Pütz, T. 2007. In situ soil water extraction: a review. Journal of Environmental Quality 36: 1735–1748.

Weiler, M., McDonnell, J.J. 2006. Testing nutrient flushing hypotheses at the hillslope scale: A virtual experiment approach. Journal of Hydrology 319: 339–356.

Zakosek, H.,Romschinski, A.,Sedlatschek, A. 1971. Die Böden der Teilgebiete A und B des Forschungsgebiets Krofdorf. Kurzbericht an die Projektgruppe Krofdorf. Hessisches Landesamt für Bodenforschung, Wiesbaden.

Abstract
Periglacial cover beds are an important trigger of slope-water paths in sloped terrain of the mid-latitudes. Most hydropedological studies focus on the quantitative analysis about the interrelation between subsurface layering and runoff processes at the slope scale. In this research we emphasis on a qualitative environmental geochemical analysis of trace elements and dissolved organic carbon in a small forest hydrological study area in the central parts of the subdued mountains of Germany (Location: KrofdorferForst, +50° 41' 3.69", +8° 38' 38.87"). The main objective is to assess the effect of lithological discontinuities of stratified soils within the depth functions of trace elements concentration in soil solutions (soil water and its dissolved and mobile fraction in a vertical distribution). Lorz (2008) show that depth functions of manganese (Mn) are characterized by strong pedogenic dynamics, analysing a shortened sequential extraction of solid soil material. We investigated the hypothesis that lithological discontinuities act like aquicludes. Therefore we expect abrupt changes within the depth function of manganese as a result of such water-blocking effect (= geochemical barriers) as a consequence of mobilization under wet soil conditions. In a preliminary case study we sampled soil solutions from three different plots within a 400m-toposequence. We use in situ trench installed suction lysimeters with ceramic tips (Irrometer Soil Solution Access Tube) to extract soil water samples each 20 cm from top- (10 cm) to subsoil (110 cm). For geochemical element analysis we use an inductively coupled plasma mass spectrometry (ICP-MS). The results: A clear character of abrupt changes within the depth function could be illustrated for most of the plots. For example, at the upper slope plot a contrast of the depth function is from 1013 ppb mean concentration at 50 cm profile depth to 290 ppb mean concentration at 70 cm profile depth (17 month sampling period). To conclude, these results demonstrate that hydrochemical quality and translocation processes of soil solutions determining an interrelation between subsurface layering and run off processes - respectively could be seen as an environmental consequence of it.

Keywords: Pedohydrology, trace elements, periglacial cover beds, hillslope hydrology, geochemical barriers

References

Amacher, M.C., O’Neill, K.P., 2004. Assessing soil compaction on forest inventory and analysis Phase 3 Field plots using a pocket penetrometer. Research paper RMRS-RP-46WWW. Fort Collins. CO: U.S. Department of Agriculture.Forest Service, Rocky Mountain Research Station.

BGR=Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten. Ed.. 2005.Bodenkundliche Kartieranleitung. Schweizerbart Science Publisher. Hannover.

Chifflard, P., Didszun, J., Zepp, H., 2008. Skalenübergreifende Prozess-Studien zur Abflussbildung in Gebieten mit periglazialen Deckschichten (Sauerland. Deutschland). Grundwasser, 13,27-41.

Chifflard, P.,Kirnbauer, R.,Zepp, H.,Tilch, N.,Didszun, J.,Zillgens, B., Schumann, A.,Uhlenbrook, S., 2010. Tracing run off generation processes through different spatial scales in low and high mountain ranges. International Association of Hydrological Sciences (IAHS)Publications 336: 90-95.

Du Laing, G. 2010. Analysis and fractionation of trace elements in soils. In:Hooda, P.S. (Ed.). Trace elements in soils.Wiley, West Sussex, pp. 53-80.

DWA = Deutsche Vereinigung für Wasserwirtschaft. Abwasser und Abfall. 2008. In situ-Erfassung von Bodenlösung. Merkblatt DWA-M 905. DWA-Regelwerk. DWA. Bad Hennef.

EPA = U.S. Environmental Protection Agency. 1992. Method 1311: Toxicity Characteristic Leaching Procedure. Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf

Fiedler, S., Jungkunst, H. P., Jahn, R., Kleber, M., Sommer,M., Stahr, K. 2002. Linking soil classification and soil dynamics – pedological and ecological perspectives. Journal of Plant Nutrition and Soil Science 165: 517-529.

Führer. H.-W. 1990. Einflüsse des Waldes und waldbauliche Maßnahmen auf Höhe, zeitliche Verteilung und Qualität des Abflusses aus kleinen Einzugsgebieten – Projektstudie im Krofdorfer Buchenforst. Forstwissenschaftliche Fakultät der Universität München und BayerischeForstliche Versuchs- und Forschungsanstalt, München.

Gilkes, R.J., McKenzie, R.M. 1988.Geochemistry and Mineralogy of Manganese in Soils. In: Graham, R.D.,Hannam, R.J.,Uren, N.C. (Eds.). Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht et al., pp.23-35.

Grossmann, J., Udluft, P. 1991. The extraction of soil water by the suction-cup method: a review. European Journal of Soil Science 42: 83-93.

Gurtz. J., Zappa, M., Jasper, K., Lang, L., Verbunt, M., Badoux, A., Vitvar, T. 2003. A comparative study in modelling runoff and its components in two mountainous catchments. Hydrological Processes 17: 297-311.

Kleber, A., Dietze, M.,Terhorst, B. 2013. Sedimantary properties of layers. In:Kleber, A.,Terhorst, B. (Eds.). Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 12-18.

Kleber, A.,Terhorst, B. 2013. Introduction. In: Kleber, A.,Terhorst, B. (Eds.) Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 1-8.

Lorz, C., Heller, K., Kleber, A. 2011. Stratification of the regolith continuum – a key property for processes and functions of landscapes. Zeitschrift für Geomorphologie 55(S3): 277-292.

Lorz, C., Phillips, J.D. 2006.Pedo-ecological consequences of lithological discontinuities in soils – examples from Central Europe. Journal of Plant Nutrition and Soil Science 169: 573–581.

Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R., Kleber, A. 2013. Influence of cover beds on slope hydrology. In: Kleber, A.,Terhorst, B. (Eds.). Mid-Latitude Slope Deposits (Cover Beds). Elsevier, Amsterdam, pp. 127-152.

Norvell, W.A. 1988. Inorganic reactions of manganese in soils. In: Graham. R.D., Hannam, R.J.,Uren, N.C. (Eds.). Manganese in Soils and Plants. Kluwer Academic Publishers. Dordrecht et al., pp.37-58.

Ostaszewska, K. 2010. The geochemical landscape concept and its usefulness in physical geography. Miscellanea Geographica 14: 5-12.

Perelman, A.I. 1977. Geochemistry of Elements in the Supergene Zone. Keter Publishing House, Jerusalem.

Reiss, M., Chifflard, P. 2014. Short report: Identifying sources of subsurface flow – A theoretical framework assessing hydrological implications of lithological discontinuities. Open Journal of Modern Hydrology 4:91 - 94

Scherer, J. 2003. Der Waldboden im Pfändergebiet – Zustand und Stoffdynamik. Schriftenreihe Lebensraum Vorarlberg. Band 55. Amt der Vorarlberger Landesregierung, Bregenz.

Schumann, S., Schmalz, B.,Meesenburg, H., Schröder, U. 2010. Status andperspectivesofhydrology in small basins. IHP/HWRP-Berichte 10, Koblenz.

Semmel, A.,Terhorst, B. 2010. The concept of the Pleistocene periglacial cover beds in central Europe: A review. Quaternary International 222: 120-128.

Weihermüller, L., Siemens, J.,Deurer, M., Knoblauch, S., Rupp, H.,Göttlein, A., Pütz, T. 2007. In situ soil water extraction: a review. Journal of Environmental Quality 36: 1735–1748.

Weiler, M., McDonnell, J.J. 2006. Testing nutrient flushing hypotheses at the hillslope scale: A virtual experiment approach. Journal of Hydrology 319: 339–356.

Zakosek, H.,Romschinski, A.,Sedlatschek, A. 1971. Die Böden der Teilgebiete A und B des Forschungsgebiets Krofdorf. Kurzbericht an die Projektgruppe Krofdorf. Hessisches Landesamt für Bodenforschung, Wiesbaden.



Eurasian Journal of Soil Science