Eurasian Journal of Soil Science

Volume 14, Issue 2, Mar 2025, Pages 157-167
DOI: 10.18393/ejss.1646812
Stable URL: http://ejss.fess.org/10.18393/ejss.1646812
Copyright © 2025 The authors and Federation of Eurasian Soil Science Societies



Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid

X

Article first published online: 25 Feb 2025 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 35 | 419

Rao,D., Yadav,S., Choudhary,R., Sushkova,S., Ahlawat,J., Sachan,C., Yadav,S., 2025. Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid. Eurasian J Soil Sci 14(2):157-167. DOI : 10.18393/ejss.1646812
Rao,D. Yadav,S.Choudhary,R.,Sushkova,S.Ahlawat,J.Sachan,C.,& Yadav,S. Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid Eurasian Journal of Soil Science, 14(2):157-167. DOI : 10.18393/ejss.1646812
Rao,D. Yadav,S.Choudhary,R.,Sushkova,S.Ahlawat,J.Sachan,C., and ,Yadav,S."Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid" Eurasian Journal of Soil Science, 14.2 (2025):157-167. DOI : 10.18393/ejss.1646812
Rao,D. Yadav,S.Choudhary,R.,Sushkova,S.Ahlawat,J.Sachan,C., and ,Yadav,S. "Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid" Eurasian Journal of Soil Science,14(Mar 2025):157-167 DOI : 10.18393/ejss.1646812
D,Rao.S, Yadav.R,Choudhary.S,Sushkova.J,Ahlawat.C,Sachan.S,Yadav "Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid" Eurasian J. Soil Sci, vol.14, no.2, pp.157-167 (Mar 2025), DOI : 10.18393/ejss.1646812
Rao,Deepak ; Yadav,Sangita ;Choudhary,Ravish ;Sushkova,Svetlana ;Ahlawat,Jyoti ;Sachan,Chandra Prakash ;Yadav,Shiv Kumar Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid. Eurasian Journal of Soil Science, (2025),14.2:157-167. DOI : 10.18393/ejss.1646812

How to cite

Rao, D., Yadav, S., Choudhary, R., Sushkova, S., Ahlawat, J., Sachan, C., Yadav, S., 2025. Enhancing of Early Seedling Vigour (ESV) parameters in Lentils through integrated priming with silicic and humic acid. Eurasian J. Soil Sci. 14(2): 157-167. DOI : 10.18393/ejss.1646812

Author information

Deepak Rao , Amity Institute of Organic Agriculture, Amity University, Noida, India & Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
Sangita Yadav , Division of Seed Science and Technology, Indian Agricultural Research Institute, ICAR-IARI, 110012, New Delhi, India
Ravish Choudhary , Division of Seed Science and Technology, Indian Agricultural Research Institute, ICAR-IARI, 110012, New Delhi, India
Svetlana Sushkova , Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
Jyoti Ahlawat , School of Agricultural Sciences, GD Goenka University Gurugram, 122103, India
Chandra Prakash Sachan , Department of Seed Science and Technology, The Chandra Shekhar Azad University of Agriculture & Technology, Kanpur, UP, India
Shiv Kumar Yadav , Division of Seed Science and Technology, Indian Agricultural Research Institute, ICAR-IARI, 110012, New Delhi, India

Publication information

Article first published online : 25 Feb 2025
Manuscript Accepted : 20 Feb 2025
Manuscript Received: 11 Aug 2024
DOI: 10.18393/ejss.1646812
Stable URL: http://ejss.fesss.org/10.18393/ejss.1646812

Abstract

Seed priming has emerged as an innovative and economical technique to elevate seed quality, fostering uniform, swift, and robust germination under both stress and non-stress conditions. This study endeavors to scrutinize the effects of organic (silicic acid, SA) and inorganic (humic acid, HA) acids, alongside their synergistic combinations, on seed quality parameters in three distinct lentil (Lens culinaris) genotypes: IPL-316 (tolerant), PSL-9, and PDL-1 (sensitive). Critical parameters assessed encompass germination percentage, root and shoot length, seed vigor indices I and II, and dry weight under meticulously controlled laboratory conditions. The priming agents were standardized across a spectrum of concentrations and durations. Sterilized seeds were immersed in silicic acid (1, 2, 3, 4, and 5 mM), humic acid (100, 200, 300, 400, 600, 800, and 1000 ppm), and their combinations over varying durations (2 to 18 hours), including control and hydropriming treatments. Following treatment, seeds were air-dried and subjected to growth assessments. The findings reveal that priming significantly bolsters early-stage plant growth across all three lentil genotypes, with the combined application of silicic and humic acids yielding remarkable enhancements in all seed quality parameters, intricately influenced by genotype and treatment combination.

Keywords

Seed priming, Silicic acid, Humic acid, Lentil (Lens culinaris), Germination percentage, Seed vigor indices, Root and shoot length, Dry weight, Integrated priming.

Corresponding author

References

Abdul-Baki, A.S., Anderson, J.D., 1973. Vigour determination in soybean seed by multiple criteria. Crop Science 13(6): 630-633.

Aghamir, F., Bahrami, H., Malakouti, M.J., Eshghi, S., Sharifi, F., 2016. Seed germination and seedling growth of bean (Phaseolus vulgaris) as influenced by magnetized saline water. Eurasian Journal of Soil Science 5(1): 39–46.

Ajouri, A., Asgedom, H., Becker, M., 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science 167(5): 630–636.

Asgedom, H., Becker, M., 2001. Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceeding of the Deutcher Tropentag, University of Bonn and ATSAF. Margraf Publishers Press, Weickersheim, 282p.

Bahrani, A., Pourreza, J., 2012. Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Applied Science Journal 18(5): 633–641.

Bandyopadhyay, P.K., Halder, S., Mondal, K., Singh, K.C., Nandi, R., Ghosh, P.K., 2018. Response of lentil (Lens culinaries) to post-rice residual soil moisture under contrasting tillage practices. Agricultural Research 7: 463–479.

Bourgault, M., Löw, M., Tausz‐Posch, S., Nuttall, J.G., Delahunty, A.J., Brand, J., Panozzo, J.F., McDonald, L., O'Leary, G.J., Armstrong, R.D., Fitzgerald, G.J., Tausc, M., 2018. Effect of a heat wave on lentil grown under free‐air CO2 enrichment (FACE) in a semi‐arid environment. Crop Science 58(2): 803–812.

Ceritoglu, M., Erman, M., Çığ, F., Ceritoglu, F., Uçar, Ö., Soysal, S., El Sabagh, A., 2023. Enhancement of root system architecture, seedling growth, and germination in lentil under salinity stress by seed priming with silicon and salicylic acid. Polish Journal of Environmental Studies 32(5): 4481-4491.

Chourasiya, V.K., Nehra, A., Shukla, P.S., Singh, K.P., Singh, P., 2021. Impact of mesoporous nano-silica (SiO₂) on seed germination and seedling growth of wheat, pea and mustard seed. Journal of Nanoscience and Nanotechnology 21(6): 3566-3572.

Devika, O.S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., Rakshit, A., 2021. Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems 5: 654001.

Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S.S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O.P., Devanna, B.N., Tripathi, D.K., Deshmukh, R., 2021. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry 162: 110-123.

Freitas, R.S., da Silva, E.C., 2024. Unveiling the influence of stress memory: Enhancing stress tolerance in seedlings through seed stage stress exposure. Plant Physiology Report 29: 165–175.

Ghosh, T., Yadav, S.K., Choudhary, R., Rao, D., Sushma, M.K., Mandal, A., Hussain, Z., Minkina, T., Rajput, V.D., Yadav, S., 2024. Effect of zinc oxide nanoparticle based seed priming for enhancing seed vigour and physio-biochemical quality of tomato seedlings under salinity stress. Russian Journal of Plant Physiology 71(1): 38.

GOI, 2021. Agricultural Statistics Division. Department of Agriculture and Cooperation and Farmers Welfare. Agricultural Statistics at a Glance. Ministry of Agriculture, Government of India (GOI), New Delhi, India.

Guo, X., Zhi, W., Feng, Y., Zhou, G., Zhu, G., 2022. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. PLoS One 17(2): e0263036.

Hussain, I., Ijaz, M., Ul-Allah, S., Sattar, A., Sher, A., Nawaz, A., Ghaffar, A., Rahman, M.H., Ahmad, S., Rashees, I., Nasif, O., Ansari, M.J., 2023. Optimum zinc fertilization and sowing date improved growth, yield components, and grain zn contents of bread wheat under different tillage systems. Journal of Soil Science and Plant Nutrition 23(2): 2344-2353.

ISTA, 2022. The International Seed Testing Association. International rules for seed testing. Chapter 2: Sampling. Available at [Access date : 11.08.2024]:  https://www.seedtest.org/en/publications/international-rules-seed-testing.html

Johnson, R., Puthur, J.T., 2021. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry 162: 247–257.

Karim, M.N., Sani, M.N.H., Uddain, J., Azad, M.O.K., Kabir, M.S., Rahman, M.S., Choi, K.Y., Naznin, M.T., 2020. Stimulatory effect of seed priming as pretreatment factors on germination and yield performance of yard long bean (Vigna unguiculata). Horticulturae 6(4): 104.

Khaitov, B., Tadjetdinov, N., Sayimbetov, A., Khaitbaeva, J., Sindarov, O., Khakberdiev, O., Nematov, T., 2024. Improving the growth of Glycyrrhiza Glabra L. in saline soils using bioagent seed treatments. Eurasian Journal of Soil Science 13(1): 43–51.

Marcos, F.C., Silveira, N.M., Marchiori, P.E., Machado, E.C., Souza, G.M., Landell, M.G., Ribeiro, R.V., 2018. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLoS One 13(12): e0206716.

Mauch-Mani, B., Baccelli, I., Luna, E. Flors, V., 2017. Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology 68(1): 485–512.

Mazhar, M.W., Ishtiaq, M., Maqbool, M., Ullah, F., Sayed, S.R.M., Mahmoud, E.A., 2023. Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. South African Journal of Botany 162: 577–587.

Mohamed, H.M., Zaki, A.M., El-Bagoury, O.H., Younis, R.A., 2018. Biological changes occured in soybean seed during exposing to several types of seed priming. Arab Universities Journal of Agricultural Sciences 26: 1841-1856.

Özyazıcı, G., Açıkbaş, S., Özyazıcı, M.A., 2023. Effects of salicylic acid priming application in some switchgrass (Panicum virgatum L.) cultivars. International Journal of Nature and Life Sciences 7(2): 137–146.

Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M.M., Carbonera, D., Balestrazzi, A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports 34: 1281-1293.

Paul, S., Dey, S., Kundu, R., 2022. Seed priming: an emerging tool towards sustainable agriculture. Plant Growth Regulation 97(2): 215–234.

Poomani, S., Yadav, S., Choudhary, R., Singh, D., Dahuja, A., Yadav, S.K., 2023. Seed priming with humic acid modifies seedling vigor and biochemical response of lentilunder heat stress conditions. Turkish Journal of Agriculture and Forestry 47(6): 1043-1057.

Raj, A.B., Raj, S.K., 2019. Seed priming: An approach towards agricultural sustainability. Journal of Applied and Natural Science 11(1): 227–234.

Rao, D., Yadav, S., Choudhary, R., Singh, D., 2024. Integrated application of silicic and humic acid seed priming for enhanced germination and yield of lentil (Lens culinarisL.). Legume Research-An International Journal LR-5248.

Rao, D., Yadav, S., Choudhary, R., Singh, D., Bhardwaj, R., Barthakur, S., Yadav, S.K., 2023. Silicic and humic acid priming İmproves micro-and macronutrient uptake, salinity stress tolerance, seed quality, and physio-biochemical parameters in lentil (Lens culinaris spp. culinaris). Plants 12(20): 3539.

Raza, M.A.S., Aslam, M.U., Valipour, M., Iqbal, R., Haider, I., Mustafa, A.E.Z.M.A., Elshikh, M.S., Ali, I., Roy, R., Elshamly, A.M.S., 2024. Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Scientific Reports 14: 886.

Richmond, K.E., Sussman, M., 2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6(3): 268–272.

Ruan, S., Xue, Q., Tylkowska, K., 2002. The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Science and Technology 30(1): 61–67.

Sinsawat, V., Leipner, J., Stamp, P., Fracheboud, Y., 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany 52(2): 123–129.

Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Arirob, W., Anusontpornperm, S., Datta, A., 2021. Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress. Journal of Plant Nutrition 44(13): 1869-1885.

Thakur, A., Sharma, K.D., Siddique, K.H., Nayyar, H., 2020. Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Scientia Horticulturae 261: 108929.

Abstract

Seed priming has emerged as an innovative and economical technique to elevate seed quality, fostering uniform, swift, and robust germination under both stress and non-stress conditions. This study endeavors to scrutinize the effects of organic (silicic acid, SA) and inorganic (humic acid, HA) acids, alongside their synergistic combinations, on seed quality parameters in three distinct lentil (Lens culinaris) genotypes: IPL-316 (tolerant), PSL-9, and PDL-1 (sensitive). Critical parameters assessed encompass germination percentage, root and shoot length, seed vigor indices I and II, and dry weight under meticulously controlled laboratory conditions. The priming agents were standardized across a spectrum of concentrations and durations. Sterilized seeds were immersed in silicic acid (1, 2, 3, 4, and 5 mM), humic acid (100, 200, 300, 400, 600, 800, and 1000 ppm), and their combinations over varying durations (2 to 18 hours), including control and hydropriming treatments. Following treatment, seeds were air-dried and subjected to growth assessments. The findings reveal that priming significantly bolsters early-stage plant growth across all three lentil genotypes, with the combined application of silicic and humic acids yielding remarkable enhancements in all seed quality parameters, intricately influenced by genotype and treatment combination.

Keywords: Seed priming, Silicic acid, Humic acid, Lentil (Lens culinaris), Germination percentage, Seed vigor indices, Root and shoot length, Dry weight, Integrated priming.

References

Abdul-Baki, A.S., Anderson, J.D., 1973. Vigour determination in soybean seed by multiple criteria. Crop Science 13(6): 630-633.

Aghamir, F., Bahrami, H., Malakouti, M.J., Eshghi, S., Sharifi, F., 2016. Seed germination and seedling growth of bean (Phaseolus vulgaris) as influenced by magnetized saline water. Eurasian Journal of Soil Science 5(1): 39–46.

Ajouri, A., Asgedom, H., Becker, M., 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science 167(5): 630–636.

Asgedom, H., Becker, M., 2001. Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceeding of the Deutcher Tropentag, University of Bonn and ATSAF. Margraf Publishers Press, Weickersheim, 282p.

Bahrani, A., Pourreza, J., 2012. Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Applied Science Journal 18(5): 633–641.

Bandyopadhyay, P.K., Halder, S., Mondal, K., Singh, K.C., Nandi, R., Ghosh, P.K., 2018. Response of lentil (Lens culinaries) to post-rice residual soil moisture under contrasting tillage practices. Agricultural Research 7: 463–479.

Bourgault, M., Löw, M., Tausz‐Posch, S., Nuttall, J.G., Delahunty, A.J., Brand, J., Panozzo, J.F., McDonald, L., O'Leary, G.J., Armstrong, R.D., Fitzgerald, G.J., Tausc, M., 2018. Effect of a heat wave on lentil grown under free‐air CO2 enrichment (FACE) in a semi‐arid environment. Crop Science 58(2): 803–812.

Ceritoglu, M., Erman, M., Çığ, F., Ceritoglu, F., Uçar, Ö., Soysal, S., El Sabagh, A., 2023. Enhancement of root system architecture, seedling growth, and germination in lentil under salinity stress by seed priming with silicon and salicylic acid. Polish Journal of Environmental Studies 32(5): 4481-4491.

Chourasiya, V.K., Nehra, A., Shukla, P.S., Singh, K.P., Singh, P., 2021. Impact of mesoporous nano-silica (SiO₂) on seed germination and seedling growth of wheat, pea and mustard seed. Journal of Nanoscience and Nanotechnology 21(6): 3566-3572.

Devika, O.S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., Rakshit, A., 2021. Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems 5: 654001.

Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S.S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O.P., Devanna, B.N., Tripathi, D.K., Deshmukh, R., 2021. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry 162: 110-123.

Freitas, R.S., da Silva, E.C., 2024. Unveiling the influence of stress memory: Enhancing stress tolerance in seedlings through seed stage stress exposure. Plant Physiology Report 29: 165–175.

Ghosh, T., Yadav, S.K., Choudhary, R., Rao, D., Sushma, M.K., Mandal, A., Hussain, Z., Minkina, T., Rajput, V.D., Yadav, S., 2024. Effect of zinc oxide nanoparticle based seed priming for enhancing seed vigour and physio-biochemical quality of tomato seedlings under salinity stress. Russian Journal of Plant Physiology 71(1): 38.

GOI, 2021. Agricultural Statistics Division. Department of Agriculture and Cooperation and Farmers Welfare. Agricultural Statistics at a Glance. Ministry of Agriculture, Government of India (GOI), New Delhi, India.

Guo, X., Zhi, W., Feng, Y., Zhou, G., Zhu, G., 2022. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. PLoS One 17(2): e0263036.

Hussain, I., Ijaz, M., Ul-Allah, S., Sattar, A., Sher, A., Nawaz, A., Ghaffar, A., Rahman, M.H., Ahmad, S., Rashees, I., Nasif, O., Ansari, M.J., 2023. Optimum zinc fertilization and sowing date improved growth, yield components, and grain zn contents of bread wheat under different tillage systems. Journal of Soil Science and Plant Nutrition 23(2): 2344-2353.

ISTA, 2022. The International Seed Testing Association. International rules for seed testing. Chapter 2: Sampling. Available at [Access date : 11.08.2024]:  https://www.seedtest.org/en/publications/international-rules-seed-testing.html

Johnson, R., Puthur, J.T., 2021. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry 162: 247–257.

Karim, M.N., Sani, M.N.H., Uddain, J., Azad, M.O.K., Kabir, M.S., Rahman, M.S., Choi, K.Y., Naznin, M.T., 2020. Stimulatory effect of seed priming as pretreatment factors on germination and yield performance of yard long bean (Vigna unguiculata). Horticulturae 6(4): 104.

Khaitov, B., Tadjetdinov, N., Sayimbetov, A., Khaitbaeva, J., Sindarov, O., Khakberdiev, O., Nematov, T., 2024. Improving the growth of Glycyrrhiza Glabra L. in saline soils using bioagent seed treatments. Eurasian Journal of Soil Science 13(1): 43–51.

Marcos, F.C., Silveira, N.M., Marchiori, P.E., Machado, E.C., Souza, G.M., Landell, M.G., Ribeiro, R.V., 2018. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLoS One 13(12): e0206716.

Mauch-Mani, B., Baccelli, I., Luna, E. Flors, V., 2017. Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology 68(1): 485–512.

Mazhar, M.W., Ishtiaq, M., Maqbool, M., Ullah, F., Sayed, S.R.M., Mahmoud, E.A., 2023. Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. South African Journal of Botany 162: 577–587.

Mohamed, H.M., Zaki, A.M., El-Bagoury, O.H., Younis, R.A., 2018. Biological changes occured in soybean seed during exposing to several types of seed priming. Arab Universities Journal of Agricultural Sciences 26: 1841-1856.

Özyazıcı, G., Açıkbaş, S., Özyazıcı, M.A., 2023. Effects of salicylic acid priming application in some switchgrass (Panicum virgatum L.) cultivars. International Journal of Nature and Life Sciences 7(2): 137–146.

Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M.M., Carbonera, D., Balestrazzi, A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports 34: 1281-1293.

Paul, S., Dey, S., Kundu, R., 2022. Seed priming: an emerging tool towards sustainable agriculture. Plant Growth Regulation 97(2): 215–234.

Poomani, S., Yadav, S., Choudhary, R., Singh, D., Dahuja, A., Yadav, S.K., 2023. Seed priming with humic acid modifies seedling vigor and biochemical response of lentilunder heat stress conditions. Turkish Journal of Agriculture and Forestry 47(6): 1043-1057.

Raj, A.B., Raj, S.K., 2019. Seed priming: An approach towards agricultural sustainability. Journal of Applied and Natural Science 11(1): 227–234.

Rao, D., Yadav, S., Choudhary, R., Singh, D., 2024. Integrated application of silicic and humic acid seed priming for enhanced germination and yield of lentil (Lens culinarisL.). Legume Research-An International Journal LR-5248.

Rao, D., Yadav, S., Choudhary, R., Singh, D., Bhardwaj, R., Barthakur, S., Yadav, S.K., 2023. Silicic and humic acid priming İmproves micro-and macronutrient uptake, salinity stress tolerance, seed quality, and physio-biochemical parameters in lentil (Lens culinaris spp. culinaris). Plants 12(20): 3539.

Raza, M.A.S., Aslam, M.U., Valipour, M., Iqbal, R., Haider, I., Mustafa, A.E.Z.M.A., Elshikh, M.S., Ali, I., Roy, R., Elshamly, A.M.S., 2024. Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Scientific Reports 14: 886.

Richmond, K.E., Sussman, M., 2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6(3): 268–272.

Ruan, S., Xue, Q., Tylkowska, K., 2002. The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Science and Technology 30(1): 61–67.

Sinsawat, V., Leipner, J., Stamp, P., Fracheboud, Y., 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany 52(2): 123–129.

Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Arirob, W., Anusontpornperm, S., Datta, A., 2021. Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress. Journal of Plant Nutrition 44(13): 1869-1885.

Thakur, A., Sharma, K.D., Siddique, K.H., Nayyar, H., 2020. Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Scientia Horticulturae 261: 108929.



Eurasian Journal of Soil Science