Eurasian Journal of Soil Science

Volume 13, Issue 3, Jun 2024, Pages 254-262
DOI: 10.18393/ejss.1484756
Stable URL: http://ejss.fess.org/10.18393/ejss.1484756
Copyright © 2024 The authors and Federation of Eurasian Soil Science Societies



Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry

X

Article first published online: 15 May 2024 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 18 | 95

Singh,L., Sadawarti,R., Singh,S., Rajput,V., Minkina,T., Sushkova,S., 2024. Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry. Eurasian J Soil Sci 13(3):254-262. DOI : 10.18393/ejss.1484756
Singh,L.,Sadawarti,R.Singh,S.Rajput,V.Minkina,T.,& Sushkova,S. Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry Eurasian Journal of Soil Science, 13(3):254-262. DOI : 10.18393/ejss.1484756
Singh,L.,Sadawarti,R.Singh,S.Rajput,V.Minkina,T., and ,Sushkova,S."Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry" Eurasian Journal of Soil Science, 13.3 (2024):254-262. DOI : 10.18393/ejss.1484756
Singh,L.,Sadawarti,R.Singh,S.Rajput,V.Minkina,T., and ,Sushkova,S. "Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry" Eurasian Journal of Soil Science,13(Jun 2024):254-262 DOI : 10.18393/ejss.1484756
L,Singh.R,Sadawarti.S,Singh.V,Rajput.T,Minkina.S,Sushkova "Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry" Eurasian J. Soil Sci, vol.13, no.3, pp.254-262 (Jun 2024), DOI : 10.18393/ejss.1484756
Singh,Lakhwinder ;Sadawarti,Ramesh Kumar ;Singh,Shailesh Kumar ;Rajput,Vishnu D. ;Minkina,Tatiana ;Sushkova,Svetlana Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry. Eurasian Journal of Soil Science, (2024),13.3:254-262. DOI : 10.18393/ejss.1484756

How to cite

Singh, L., Sadawarti, R., Singh, S., Rajput, V., Minkina, T., Sushkova, S., 2024. Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry. Eurasian J. Soil Sci. 13(3): 254-262. DOI : 10.18393/ejss.1484756

Author information

Lakhwinder Singh , Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, 144-411, Punjab, India
Ramesh Kumar Sadawarti , Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, 144-411, Punjab, India
Shailesh Kumar Singh , Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, 144-411, Punjab, India
Vishnu D. Rajput , Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
Tatiana Minkina , Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
Svetlana Sushkova , Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia

Publication information

Article first published online : 15 May 2024
Manuscript Accepted : 13 May 2024
Manuscript Received: 20 Feb 2024
DOI: 10.18393/ejss.1484756
Stable URL: http://ejss.fesss.org/10.18393/ejss.1484756

Abstract

The research investigates the transformative impact of nano-zinc oxide and iron oxide formulations on prolonging the shelf life of strawberries. A total of 16 distinct treatments were applied through foliar application, and a nano-zinc oxide (ZnO) and iron oxide (FeO) formulations were administered. Each square meter received 42 ml of the solution in triplicate, ensuring a comprehensive exploration of the formulations' impact on shelf-life enhancement. Notably, the combined application of ZnO and FeO NPs at 150 mg/l, specifically T15 (Z3F3), exhibited superior effectiveness in preserving the crop. T11 (Z2F2), featuring 100 mg/l ZnO and 100 mg/l FeO, closely trailed T15, showcasing significant improvements in parameters such as ascorbic acid content (49.66 mg/100g), and anthocyanin content (39.82 mg/l), etc. at nine days after harvesting. Besides this, TSS (7.25 obrix) in T14 and acidity (0.65%) in T5 and T9 at nine days intervals. These findings advancing the strawberry preservation methods in the agriculture and food industries and establishes the superiority of simultaneous applications of nano-formulations in T15 (150 mg/l ZnO + 150 mg/l FeO) and T11 (100 mg/l ZnO + 100 mg/l FeO). These formulations emerge as optimal solutions for extending the shelf life of strawberry fruits, particularly the Cv. Winter Dawn under Punjab Region, India, and could implement in similar climatic condition around world.

Keywords

Strawberry, winter dawn, nano-fertilizers, ZnO, FeO, shelf life, anthocyanin content.

Corresponding author

References

Al Tawaha, A.R.M., Singh, A., Rajput, V. D., Varshney, A., Agrawal, S., Ghazaryan, K.,      Minkina, T., Al Zoubi, O.M., Habeeb, T., Dionis, L., Hasan, H.A., Shawaqfeh, S., 2024. Green nanofertilizers – The need for modern agriculture, ıntelligent, and environmentally-friendly approaches. Ecological Engineering & Environmental Technology 25(1): 1-21.

Al-Mamun, M. R., Hasan, M.R., Ahommed, M.S., Bacchu, M.S., Ali, M.R., Khan, M.Z.H.,   2021. Nanofertilizers towards sustainable agriculture and environment.            Environmental    Technology & Innovation 23: 101658.

Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., da Silva Crespo, J., 2020.    Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15: 100223.

Barakhov, A., Chernikova, N., Dudnikova, T., Barbashev, A., Sushkova, S., Mandzhieva, S., Rajput, V.D., Kizilkaya, R., Konstantinova, E., Bren, D., Minkina, T., Konstantinov, A., 2023. Role of sorbents in early growth of barley under copper and benzo(a)pyrene contaminated soils. Eurasian Journal of Soil Science 12(1): 1–9.

Bayat, M., Pakina, E., Astarkhanova, T., Sediqi, A. N., Zargar, M., Vvedenskiy, V., 2019. Review on agro-nanotechnology for ameliorating strawberry cultivation. Research on Crops 20(4): 731-736.

Cankurt, K., İpek, M., 2023. The Effects of some organic compounds on yield and fruit quality in albion strawberry (Fragaria x ananassa Duch) ultivar. Selcuk Journal of Agriculture and Food Sciences 37(1):19-24.

Chaplygin V., Mandzhieva S., Minkina T., Sushkova S., Barahov A., Nevidomskaya D., Kızılkaya, R., Gülser C., Chernikova, N., Mazarji M., Iljina L., Rajput V., 2020. Accumulating capacity of herbaceous plants of the Asteraceae and Poaceae families under technogenic soil pollution with zinc and cadmium. Eurasian Journal of Soil Science 9(2):165–172.

Chaturvedi, O.P., Singh, A.K., Tripathi, V.K., Dixit, A.K., 2003. Effect of zinc and iron on growth, yield and quality of strawberry cv. Chandler. Acta Horticulturae 696: 237-240.

de la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry 85(12): 2161-2174.

Duralija, B., Mikec, D., Jurić, S., Lazarević, B., Maslov Bandić, L., Vlahoviček-Kahlina, K., Vinceković, M., 2021. Strawberry fruit quality with the increased iron application. Acta Horticulturae 1309: 1033-1040.

FAO, 2023. Production: Crops and livestock products. Food and Agriculture Organization of the United Nations. Available at [Access date: 15.02.2024]: https://www.fao.org/faostat/en/#data/QCL

Jackson, M.L., 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India. 498p.

Jatav, H., Singh, S., Jatav, S., Rajput, V.D., Sushkova, S., 2021. Feasibility of sewage sludge application in rice-wheat cropping system. Eurasian Journal of Soil Science 10(3): 207-214.

Jurgens, J., 1990. Foliar fertilization in strawberry cultivation. Erwerbsobstbau 32(4): 104-107.

Kumar, U.J., Bahadur, V., Prasad, V.M., Mishra, S. and Shukla, P.K., 2017. Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences 6(8):2440-2445.

Kumar, U.J., Bairwa, M., Rolaniya, M., 2022. Effect of different concentrations of iron oxide       and zinc oxide nano-particles on quality of strawberry (Fragaria x ananassa Dutch) cv. chandler. The Pharma Innovation 11(2): 1259-1263.

Menzel, C.M., 2023. A review of fruit development in strawberry: high temperatures accelerate flower development and decrease the size of the flowers and fruit. The Journal of Horticultural Science and Biotechnology 98(4):409-431.

Meyer, M., Diehl, D., Schaumann, G.E., Muñoz, K., 2021. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. Journal of Soils and Sediments 21: 3733-3752.

Mohapatra, K., Singh, S., Patra, A., Jatav, S., Rajput, V., Popova, V., Puzikova, O., Nazarenko,         O., Sushkova, S., 2022. Biogeoaccumulation of zinc in hybrid rice (Oryza sativa L.) in an inceptisol amended with soil zinc application and its bioavailability to human being. Eurasian Journal of Soil Science 11(3): 184 – 197.

Panigrahi, H. K., Lodhi, Y., Saha, M., 2019. Growth, yield and quality improvement in strawberry through foliar application of calcium, iron and zinc: A review. Journal of Pharmacognosy and Phytochemistry 8(6):734-737.

Raliya, R., Tarafdar, J.C., 2013. ZnO nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research 2: 48-57.

Sharma, R. K., Kumar, R., Thakur, S., 1991. Effect of foliar feeding of potassium, calcium and zinc on yield and quality of guava. Indian Journal of Horticulture 48(4): 312-314.

Singh, A., Rajput, V. D., Varshney, A., Sharma, R., Ghazaryan, K., Minkina, T., El-Ramady, H., 2024b. Revolutionizing crop production: Nanoscale wonders - current applications, advances, and future frontiers. Egyptian Journal of Soil Science 64(1): 221-258.

Singh, A., Rajput, V.D., Lalotra, S., Agrawal, S., Ghazaryan, K., Singh, J., Alexiou, A., 2024a. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environmental Geochemistry and Health 46(5):148.

Singh, A., Sengar, R. S., Rajput, V. D., Al-Ghzawi, A. L., Shahi, U. P., Ghazaryan, K., Habeeb, T., 2024c. Impact of salinity stress and zinc oxide nanoparticles on macro and micronutrient assimilation: unraveling the link between environmental factors and nutrient uptake. Journal of Ecological Engineering 25(2): 1-9.

Singh, A., Sengar, R. S., Rajput, V. D., Minkina, T., Singh, R. K., 2022a. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical            indices. Agriculture 12(7):1014.

Singh, A., Sengar, R. S., Shahi, U. P., Rajput, V. D., Minkina, T., Ghazaryan, K. A., 2022b. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3(1): 33-46.

Singh, D. K., Paul, P. K., Ghosh, S.K., 2005. Response of papaya to foliar application of boron,     zinc and their combinations. Research on Crops 6(2): 277-280.

Warang, O., Sante, P., Dhole, R., 2023. Nanofertilizers for efficient fruit production: A review. The Pharma Innovation Journal 12(4): 2603-2607.

Yadlod, S.S., Kadam, B.A., 2003. Effect of plant growth regulators and micronutrients on growth, yield and storage life of banana (Musa sp.) cv. Grand Naine. The Asian Journal of Horticulture 36(2):114-117.

Yogeesha, L., 2005. Effect of Iron on yield and quality of Grape (Vitis Vinifera L) in Calcareous vertisol. University of Agricultural Sciences (Bangalore). Soil Science & Agricultural Chemistry. M.Sc.Thesis.

Abstract

The research investigates the transformative impact of nano-zinc oxide and iron oxide formulations on prolonging the shelf life of strawberries. A total of 16 distinct treatments were applied through foliar application, and a nano-zinc oxide (ZnO) and iron oxide (FeO) formulations were administered. Each square meter received 42 ml of the solution in triplicate, ensuring a comprehensive exploration of the formulations' impact on shelf-life enhancement. Notably, the combined application of ZnO and FeO NPs at 150 mg/l, specifically T15 (Z3F3), exhibited superior effectiveness in preserving the crop. T11 (Z2F2), featuring 100 mg/l ZnO and 100 mg/l FeO, closely trailed T15, showcasing significant improvements in parameters such as ascorbic acid content (49.66 mg/100g), and anthocyanin content (39.82 mg/l), etc. at nine days after harvesting. Besides this, TSS (7.25 obrix) in T14 and acidity (0.65%) in T5 and T9 at nine days intervals. These findings advancing the strawberry preservation methods in the agriculture and food industries and establishes the superiority of simultaneous applications of nano-formulations in T15 (150 mg/l ZnO + 150 mg/l FeO) and T11 (100 mg/l ZnO + 100 mg/l FeO). These formulations emerge as optimal solutions for extending the shelf life of strawberry fruits, particularly the Cv. Winter Dawn under Punjab Region, India, and could implement in similar climatic condition around world.

Keywords: Strawberry, winter dawn, nano-fertilizers, ZnO, FeO, shelf life, anthocyanin content.

References

Al Tawaha, A.R.M., Singh, A., Rajput, V. D., Varshney, A., Agrawal, S., Ghazaryan, K.,      Minkina, T., Al Zoubi, O.M., Habeeb, T., Dionis, L., Hasan, H.A., Shawaqfeh, S., 2024. Green nanofertilizers – The need for modern agriculture, ıntelligent, and environmentally-friendly approaches. Ecological Engineering & Environmental Technology 25(1): 1-21.

Al-Mamun, M. R., Hasan, M.R., Ahommed, M.S., Bacchu, M.S., Ali, M.R., Khan, M.Z.H.,   2021. Nanofertilizers towards sustainable agriculture and environment.            Environmental    Technology & Innovation 23: 101658.

Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., da Silva Crespo, J., 2020.    Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15: 100223.

Barakhov, A., Chernikova, N., Dudnikova, T., Barbashev, A., Sushkova, S., Mandzhieva, S., Rajput, V.D., Kizilkaya, R., Konstantinova, E., Bren, D., Minkina, T., Konstantinov, A., 2023. Role of sorbents in early growth of barley under copper and benzo(a)pyrene contaminated soils. Eurasian Journal of Soil Science 12(1): 1–9.

Bayat, M., Pakina, E., Astarkhanova, T., Sediqi, A. N., Zargar, M., Vvedenskiy, V., 2019. Review on agro-nanotechnology for ameliorating strawberry cultivation. Research on Crops 20(4): 731-736.

Cankurt, K., İpek, M., 2023. The Effects of some organic compounds on yield and fruit quality in albion strawberry (Fragaria x ananassa Duch) ultivar. Selcuk Journal of Agriculture and Food Sciences 37(1):19-24.

Chaplygin V., Mandzhieva S., Minkina T., Sushkova S., Barahov A., Nevidomskaya D., Kızılkaya, R., Gülser C., Chernikova, N., Mazarji M., Iljina L., Rajput V., 2020. Accumulating capacity of herbaceous plants of the Asteraceae and Poaceae families under technogenic soil pollution with zinc and cadmium. Eurasian Journal of Soil Science 9(2):165–172.

Chaturvedi, O.P., Singh, A.K., Tripathi, V.K., Dixit, A.K., 2003. Effect of zinc and iron on growth, yield and quality of strawberry cv. Chandler. Acta Horticulturae 696: 237-240.

de la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry 85(12): 2161-2174.

Duralija, B., Mikec, D., Jurić, S., Lazarević, B., Maslov Bandić, L., Vlahoviček-Kahlina, K., Vinceković, M., 2021. Strawberry fruit quality with the increased iron application. Acta Horticulturae 1309: 1033-1040.

FAO, 2023. Production: Crops and livestock products. Food and Agriculture Organization of the United Nations. Available at [Access date: 15.02.2024]: https://www.fao.org/faostat/en/#data/QCL

Jackson, M.L., 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India. 498p.

Jatav, H., Singh, S., Jatav, S., Rajput, V.D., Sushkova, S., 2021. Feasibility of sewage sludge application in rice-wheat cropping system. Eurasian Journal of Soil Science 10(3): 207-214.

Jurgens, J., 1990. Foliar fertilization in strawberry cultivation. Erwerbsobstbau 32(4): 104-107.

Kumar, U.J., Bahadur, V., Prasad, V.M., Mishra, S. and Shukla, P.K., 2017. Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences 6(8):2440-2445.

Kumar, U.J., Bairwa, M., Rolaniya, M., 2022. Effect of different concentrations of iron oxide       and zinc oxide nano-particles on quality of strawberry (Fragaria x ananassa Dutch) cv. chandler. The Pharma Innovation 11(2): 1259-1263.

Menzel, C.M., 2023. A review of fruit development in strawberry: high temperatures accelerate flower development and decrease the size of the flowers and fruit. The Journal of Horticultural Science and Biotechnology 98(4):409-431.

Meyer, M., Diehl, D., Schaumann, G.E., Muñoz, K., 2021. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. Journal of Soils and Sediments 21: 3733-3752.

Mohapatra, K., Singh, S., Patra, A., Jatav, S., Rajput, V., Popova, V., Puzikova, O., Nazarenko,         O., Sushkova, S., 2022. Biogeoaccumulation of zinc in hybrid rice (Oryza sativa L.) in an inceptisol amended with soil zinc application and its bioavailability to human being. Eurasian Journal of Soil Science 11(3): 184 – 197.

Panigrahi, H. K., Lodhi, Y., Saha, M., 2019. Growth, yield and quality improvement in strawberry through foliar application of calcium, iron and zinc: A review. Journal of Pharmacognosy and Phytochemistry 8(6):734-737.

Raliya, R., Tarafdar, J.C., 2013. ZnO nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research 2: 48-57.

Sharma, R. K., Kumar, R., Thakur, S., 1991. Effect of foliar feeding of potassium, calcium and zinc on yield and quality of guava. Indian Journal of Horticulture 48(4): 312-314.

Singh, A., Rajput, V. D., Varshney, A., Sharma, R., Ghazaryan, K., Minkina, T., El-Ramady, H., 2024b. Revolutionizing crop production: Nanoscale wonders - current applications, advances, and future frontiers. Egyptian Journal of Soil Science 64(1): 221-258.

Singh, A., Rajput, V.D., Lalotra, S., Agrawal, S., Ghazaryan, K., Singh, J., Alexiou, A., 2024a. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environmental Geochemistry and Health 46(5):148.

Singh, A., Sengar, R. S., Rajput, V. D., Al-Ghzawi, A. L., Shahi, U. P., Ghazaryan, K., Habeeb, T., 2024c. Impact of salinity stress and zinc oxide nanoparticles on macro and micronutrient assimilation: unraveling the link between environmental factors and nutrient uptake. Journal of Ecological Engineering 25(2): 1-9.

Singh, A., Sengar, R. S., Rajput, V. D., Minkina, T., Singh, R. K., 2022a. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical            indices. Agriculture 12(7):1014.

Singh, A., Sengar, R. S., Shahi, U. P., Rajput, V. D., Minkina, T., Ghazaryan, K. A., 2022b. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3(1): 33-46.

Singh, D. K., Paul, P. K., Ghosh, S.K., 2005. Response of papaya to foliar application of boron,     zinc and their combinations. Research on Crops 6(2): 277-280.

Warang, O., Sante, P., Dhole, R., 2023. Nanofertilizers for efficient fruit production: A review. The Pharma Innovation Journal 12(4): 2603-2607.

Yadlod, S.S., Kadam, B.A., 2003. Effect of plant growth regulators and micronutrients on growth, yield and storage life of banana (Musa sp.) cv. Grand Naine. The Asian Journal of Horticulture 36(2):114-117.

Yogeesha, L., 2005. Effect of Iron on yield and quality of Grape (Vitis Vinifera L) in Calcareous vertisol. University of Agricultural Sciences (Bangalore). Soil Science & Agricultural Chemistry. M.Sc.Thesis.



Eurasian Journal of Soil Science