Eurasian Journal of Soil Science

Volume 13, Issue 3, Jun 2024, Pages 210-223
DOI: 10.18393/ejss.1455407
Stable URL: http://ejss.fess.org/10.18393/ejss.1455407
Copyright © 2024 The authors and Federation of Eurasian Soil Science Societies



Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria

X

Article first published online: 19 Mar 2024 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 22 | 128

Bouaichi,I., Touaibia,B., 2024. Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria. Eurasian J Soil Sci 13(3):210-223. DOI : 10.18393/ejss.1455407
Bouaichi,I.,,& Touaibia,B. Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria Eurasian Journal of Soil Science, 13(3):210-223. DOI : 10.18393/ejss.1455407
Bouaichi,I.,, and ,Touaibia,B."Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria" Eurasian Journal of Soil Science, 13.3 (2024):210-223. DOI : 10.18393/ejss.1455407
Bouaichi,I.,, and ,Touaibia,B. "Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria" Eurasian Journal of Soil Science,13(Jun 2024):210-223 DOI : 10.18393/ejss.1455407
I,Bouaichi.B,Touaibia "Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria" Eurasian J. Soil Sci, vol.13, no.3, pp.210-223 (Jun 2024), DOI : 10.18393/ejss.1455407
Bouaichi,Ilhem ;Touaibia,Bénina Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria. Eurasian Journal of Soil Science, (2024),13.3:210-223. DOI : 10.18393/ejss.1455407

How to cite

Bouaichi, I., Touaibia, B., 2024. Nomograph development for water erosion quantification in Wadi Cheliff’s catchment, Northern Algeria. Eurasian J. Soil Sci. 13(3): 210-223. DOI : 10.18393/ejss.1455407

Author information

Ilhem Bouaichi , Mobilization and Valorization of Water Resources Laboratory (MVRE), National Higher School for Hydraulics (ENSH), Soumaa road 29, Blida, Algeria
Bénina Touaibia , Mobilization and Valorization of Water Resources Laboratory (MVRE), National Higher School for Hydraulics (ENSH), Soumaa road 29, Blida, Algeria

Publication information

Article first published online : 19 Mar 2024
Manuscript Accepted : 15 Mar 2024
Manuscript Received: 18 Sep 2023
DOI: 10.18393/ejss.1455407
Stable URL: http://ejss.fesss.org/10.18393/ejss.1455407

Abstract

Water erosion study is regarded as one of the most important axes in scientific researches. The erosive effect of water on the surface layers can have major consequences on soil loss and land degradation. The objective of our work was the development of a water erosion nomograph that represents a practical and precise tool that is adapted to local conditions for a direct quantification of erosive action in the absence of basic data. Regarding the magnitude of the phenomenon in Algeria, the catchment of Wadi Cheliff was taken as an experimental site where a significant spatio-temporal variability of liquid and solid flows was observed and the measurement network in different locations was either dispersed or non-existent. The developed methodological approach permitted the identification of 149 experimental sites (20 hydrometric stations, 15 large dams and 114 hill dams) where existing data allowed the erosion quantification. A flow coefficient variography was performed in addition to a principal component analysis (PCA), leading to the identification of three distinct groups. Moreover, the modeling of the studied variable was achieved through the application of multivariate analysis to the third group of 100 observations. Applying the principles of nomography on the final model, a nomograph of the semi-arid area of Wadi Cheliff catchment was realized for surfaces ranging from 500 to 25 000 ha. This nomograph enabled the direct quantification of water erosion from the product (Es1 Es2), taking into account the area of the catchment, its average slope and its flow coefficient with a mean absolute percentage error (MAPE) of 2%.

Keywords

Multivariate analysis, nomograph, PCA, variography, Wadi Cheliff, water erosion.

Corresponding author

References

Abdellaoui, B., Merzouk, M., Aberkan, M., Albergel, J., 2002. Hydrological balance and siltation of the Saboun dam (Morocco). Journal of Water Science 5(4): 737-748.

Achite, M., Meddi, M., 2005. Spatial and temporal variability of streamflow and solid yields in semiarid areas. Case of the oued Mina basin (Northwest Algeria). Journal of Water Science 18: 37-56.

Ammari, A., 2012. Vulnérabilité à l’Envasement des Barrages (cas du bassin Hydrographique des Côtiers Algérois). PhD thesis. University of Biskra, Algeria. 195p. Available at [Access date: 18.09.2023]: http://thesis.univ-biskra.dz/id/eprint/68

Assani, A.A., Lajoie, F., Laliberté, C., 2007. The effects of dams on mean anual flow characteristics according to management mode and basin drainage area in Québec Journal of Water Science 20(1): 127-146.

Borges, A.L., 1993. Modélisation de l’érosion sur deux bassins versants expérimentaux des Alpes du Sud. PhD thesis. University of Grenoble I, France. 258p. Available at [Access date: 18.09.2023]: https://these.hal.science/tel-00764428

Bouanani, A., 2004. Hydrologie, transport solide et modélisation. Etude de quelques sous bassins de la Tafna (NW– Algérie). PhD thesis. University of Tlemcen, Algeria. 250p. Available at [Access date: 18.09.2023]: http://dspace1.univ-tlemcen.dz/handle/112/15094

Bouchelkia, H., Remini, B., 2003. Quantification du transport solide dans le bassin versant Algérien du Chellif. Ingénieries 33: 45-56. Available at [Access date : 18.09.2023]: https://hal-science/hal-00466014

Bouchnak, H., Felfoul, M.S., Boussema, M.R., Snane, M.H., 2009. Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic formation (Tunisia). Catena 78: 170-177.

D’ocagne, M., 1884. Procède Nouveau de calcul Graphique. Annales des Ponts et Chaussées 8, 531–540.

D’ocagne, M., 1899. Traité de la nomographie. Théorie des abaques, applications pratiques ; Gauthier-Villars, Paris. 496p.

Dagnelie, P., 1992. Statistique Théorique et Appliquée, Tome 1 – Les bases théoriques. Gembloux Agronomic Presses, vol 2, Belgique. 492p.

Dengiz, O., Demirkaya, S., 2022. Estimation and spatial distribution of some soil erodibility parameters in soils of Ilgaz Nationale Park. Eurasian Journal of Soil Science 11(1): 1-9.

Eisazadeh, L., Sokouti, R., Homaee, M., Pazira, E., 2012. Comparison of empirical models to estimate soil erosion and sediment yield in micro catchments. Eurasian Journal of Soil Science 1(1): 28-33.

El Kateb, H., Zhang, H., Zhang, P., Mosandl, R., 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena 105: 1-10.

Elahcène, O., 2013. Etude du transport solide par charriage et en suspension dans le bassin versant de l’Oued Bellah (tipaza). PhD thesis. ENSA, El-Harrach, Algeria. 109 p.

Felegari, M., Talebi, A., Dastorani, M.T., Rangavar, A. S., 2014. Efficiency Assessment of Rangeland Hydrology and Erosion Model (RHEM) for water erosion quantification (Case study: Sangane Waterched-Iran). Environmental Resources Research 2(2): 134-146.

Heng, S., Suestugi, T., 2015. Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments. Hydrology Research 46(1): 26-38.

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441.

Isik, S., 2013. Regional rating curve models of suspended sediment transport for Turkey. Earth Science Informatics 6: 87–98.

Jahnke, H.N., 2012. Cauchy’s Cours d’analyse. An Annotated Translation By Robert E. Bradley, and C. Edward Sandifer. Sources and Studies in the History of Mathematics and Physical Sciences. Dordrecht (Springer) 2009. Historia Mathematica 39: 460-479.

Kheniche, S., Louamri, A., Taabni, M., 2019. Estimation du transport solide et évolution de la relation “Débit liquid – debit solide” dans un basin semi-aride (Cas de l’oued Mellegue amont). Algérie Orientale. Sciences & Technologie D 50: 71-80.

Larfi, B., Remini, B., 2006. Le transport solide dans le bassin versant de l’Oued Isser. Impact sur l’envasement du barrage de Beni Amrane (Algérie). Larhyss Journal 5: 63-73.

Lee, S.E., Kang, S.H., 2014. Geographic information system-coupling sediment delivery distributed modeling based on observed data. Water Science & Technology 70(3): 495-501.

López-Tarazón, J.A., Batalla, R.J., Vericat, D., Balasch, J.C., 2010. Rainfall, runoff and sediment transport relations in a meso scale mountainous catchment: The River Isábena (Ebro basin). Catena 82: 23-34.

Meddi, M., Toumi, S., Assani, A.A., Eslamian, S., 2014. Regionalisation of rainfall erosivity in northern Algeria. International Journal Hydrology Science and Technology 4(2) :155-175.

Megnounif, A., Terfous, A., Ghenaim, A., Poulet, J.B., 2007. Key processes influencing erosion and sediment transport in a semi-arid Mediterranean area: the Upper Tafna catchment, Algeria. Hydrological Sciences Journal 52(6): 1271-1284.

Milliman, J.D., Sediment delivery from Mediterranean rivers: regional, global and temporal perspectives. Fluxes of small and medium-size Mediterranean rivers: Impact on coastal areas. In: Proceedings of the Mediterranean Science Commission, CIESM Workshop. 29 Mars-1 Avril 2006. Trogir, Croatia. pp. 67-71.

Mokhtari, E., 2005. Etude du transport solide par charriage dans l’Oued Mina et son impact sur l’envasement du barrage de Sidi M’hamed Ben Aouda (W, Relizane). Master's thesis. ENSH, Blida, Algeria. 95 p.

Najafova, N., 2022. System of measurs for soil erosion and protection. In: Proceedings of the International Soil Science Symposium on “Soil Science and Plant Nutrition”. 2-3 December 2022. Samsun, Türkiye. pp. 195-198.

Ochoa, P.A., Fries, A., Mejía, D., Burneo, J.I., Ruíz-Sinoga, J.D., Cerdà, A., 2016. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 140: 31–42.

Özdemir, N., 2020. Effects of land and plant managements on soil erodibility in the Turhal District of Tokat, Turkey. Eurasian Journal of Soil Science 9(4): 362-367.

Pirio, L., 2010. Géométrie anamorphique I : Abaques et Nomogrammes. Images des Mathématiques. CNRS, France. 21 p. Available at [Access date: 18.09.2023]: http://dml.mathdoc.fr/item/hal-00609226/

Plan Bleu, 2003. Les menaces sur les sols dans les pays méditerranéens. Etude bibliographique. Plan bleu pour la Méditerranée, Valbonne, France. 80p.

Remini, W., Remini, B., 2003. La sédimentation dans les barrages de l’Afrique du Nord. Courrier du Savoir 04: 65-69. Available at [Access date: 18.09.2023]: https://www.asjp.cerist.dz/en/article/77926

Rey, F., Ballais, J.L., Marre, A., Rovéra, G., 2004. Role of vegetation in protection against surface hydric erosion. Comptes Rendus Géoscience 336: 991–998.

Shen, H., Zheng, F., Wen, L., Han, Y., Hu, W., 2016. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research 155: 429-436.

Shirzadi, A., Shahabi, H., Nabiollahi, K., Taghizadeh-Mehrjardi, R., Lizaga, I., Clague, J. J., Sushant, S. K., Golmohamadi, F., Ahmad, A., 2022. Towards robust smart data-driven soil erodibility index prediction under different scenarios. Geocarta International 37(26): 13176-13209.

Touaibia, B., 2000. Erosion- Transport solide- Envasement de barrage. Cas du bassin versant de l’Oued Mina (Wilaya de Relizane). PhD thesis, I.N.A. El Harrach, Algeria. 175p. Available at [Access date: 18.09.2023]: http://localhost:8080/xmlui/handle/123456789/2405

Touaibia, B., Achite, M., 2003. Contribution to the mapping of specific erosion in the Wadi Mina basin in the semiarid zone of northern Algeria. Hydrological Sciences Journal 48(2): 235-242.

Touaibia, B., Aidaoui, A., Gomer, D., Achite, M., 2001. Temporal quantification and variability of sediment discharge in a semiarid area in northern Algeria. Hydrological Sciences Journal 46(1): 41-53.

Tournès, D., 2000. NOTES & DEBATS pour une histoire du calcul graphique. Revue d’histoire des mathématiques 6 : 127-161. Available at [Access date : 18.09.2023]: http://www.numdam.org/item/RHM_2000__6_1_127_0

Tran Van, Q., 1961. Nomographie et statistique. Revue de statistique appliquée 9(3): 47-76. Available at [Access date: 18.09.2023]: http://www.numdam.org/item?id=RSA_1961__9_3_47_0

Willmott, C. J., 1981.  On the validation of models. Physical Geography 2(2): 184-194.

Yang, S.L., Milliman, D.J., Li, P., Xu, K., 2011. 50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change 75: 14-20.

Zhou, P., Luukkanen, O., Tokola, T., Nieminen, J., 2008. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75: 319–325.

Abstract

Water erosion study is regarded as one of the most important axes in scientific researches. The erosive effect of water on the surface layers can have major consequences on soil loss and land degradation. The objective of our work was the development of a water erosion nomograph that represents a practical and precise tool that is adapted to local conditions for a direct quantification of erosive action in the absence of basic data. Regarding the magnitude of the phenomenon in Algeria, the catchment of Wadi Cheliff was taken as an experimental site where a significant spatio-temporal variability of liquid and solid flows was observed and the measurement network in different locations was either dispersed or non-existent. The developed methodological approach permitted the identification of 149 experimental sites (20 hydrometric stations, 15 large dams and 114 hill dams) where existing data allowed the erosion quantification. A flow coefficient variography was performed in addition to a principal component analysis (PCA), leading to the identification of three distinct groups. Moreover, the modeling of the studied variable was achieved through the application of multivariate analysis to the third group of 100 observations. Applying the principles of nomography on the final model, a nomograph of the semi-arid area of Wadi Cheliff catchment was realized for surfaces ranging from 500 to 25 000 ha. This nomograph enabled the direct quantification of water erosion from the product (Es1  Es2), taking into account the area of the catchment, its average slope and its flow coefficient with a mean absolute percentage error (MAPE) of 2%

Keywords: Multivariate analysis, nomograph, PCA, variography, Wadi Cheliff, water erosion.

References

Abdellaoui, B., Merzouk, M., Aberkan, M., Albergel, J., 2002. Hydrological balance and siltation of the Saboun dam (Morocco). Journal of Water Science 5(4): 737-748.

Achite, M., Meddi, M., 2005. Spatial and temporal variability of streamflow and solid yields in semiarid areas. Case of the oued Mina basin (Northwest Algeria). Journal of Water Science 18: 37-56.

Ammari, A., 2012. Vulnérabilité à l’Envasement des Barrages (cas du bassin Hydrographique des Côtiers Algérois). PhD thesis. University of Biskra, Algeria. 195p. Available at [Access date: 18.09.2023]: http://thesis.univ-biskra.dz/id/eprint/68

Assani, A.A., Lajoie, F., Laliberté, C., 2007. The effects of dams on mean anual flow characteristics according to management mode and basin drainage area in Québec Journal of Water Science 20(1): 127-146.

Borges, A.L., 1993. Modélisation de l’érosion sur deux bassins versants expérimentaux des Alpes du Sud. PhD thesis. University of Grenoble I, France. 258p. Available at [Access date: 18.09.2023]: https://these.hal.science/tel-00764428

Bouanani, A., 2004. Hydrologie, transport solide et modélisation. Etude de quelques sous bassins de la Tafna (NW– Algérie). PhD thesis. University of Tlemcen, Algeria. 250p. Available at [Access date: 18.09.2023]: http://dspace1.univ-tlemcen.dz/handle/112/15094

Bouchelkia, H., Remini, B., 2003. Quantification du transport solide dans le bassin versant Algérien du Chellif. Ingénieries 33: 45-56. Available at [Access date : 18.09.2023]: https://hal-science/hal-00466014

Bouchnak, H., Felfoul, M.S., Boussema, M.R., Snane, M.H., 2009. Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic formation (Tunisia). Catena 78: 170-177.

D’ocagne, M., 1884. Procède Nouveau de calcul Graphique. Annales des Ponts et Chaussées 8, 531–540.

D’ocagne, M., 1899. Traité de la nomographie. Théorie des abaques, applications pratiques ; Gauthier-Villars, Paris. 496p.

Dagnelie, P., 1992. Statistique Théorique et Appliquée, Tome 1 – Les bases théoriques. Gembloux Agronomic Presses, vol 2, Belgique. 492p.

Dengiz, O., Demirkaya, S., 2022. Estimation and spatial distribution of some soil erodibility parameters in soils of Ilgaz Nationale Park. Eurasian Journal of Soil Science 11(1): 1-9.

Eisazadeh, L., Sokouti, R., Homaee, M., Pazira, E., 2012. Comparison of empirical models to estimate soil erosion and sediment yield in micro catchments. Eurasian Journal of Soil Science 1(1): 28-33.

El Kateb, H., Zhang, H., Zhang, P., Mosandl, R., 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena 105: 1-10.

Elahcène, O., 2013. Etude du transport solide par charriage et en suspension dans le bassin versant de l’Oued Bellah (tipaza). PhD thesis. ENSA, El-Harrach, Algeria. 109 p.

Felegari, M., Talebi, A., Dastorani, M.T., Rangavar, A. S., 2014. Efficiency Assessment of Rangeland Hydrology and Erosion Model (RHEM) for water erosion quantification (Case study: Sangane Waterched-Iran). Environmental Resources Research 2(2): 134-146.

Heng, S., Suestugi, T., 2015. Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments. Hydrology Research 46(1): 26-38.

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441.

Isik, S., 2013. Regional rating curve models of suspended sediment transport for Turkey. Earth Science Informatics 6: 87–98.

Jahnke, H.N., 2012. Cauchy’s Cours d’analyse. An Annotated Translation By Robert E. Bradley, and C. Edward Sandifer. Sources and Studies in the History of Mathematics and Physical Sciences. Dordrecht (Springer) 2009. Historia Mathematica 39: 460-479.

Kheniche, S., Louamri, A., Taabni, M., 2019. Estimation du transport solide et évolution de la relation “Débit liquid – debit solide” dans un basin semi-aride (Cas de l’oued Mellegue amont). Algérie Orientale. Sciences & Technologie D 50: 71-80.

Larfi, B., Remini, B., 2006. Le transport solide dans le bassin versant de l’Oued Isser. Impact sur l’envasement du barrage de Beni Amrane (Algérie). Larhyss Journal 5: 63-73.

Lee, S.E., Kang, S.H., 2014. Geographic information system-coupling sediment delivery distributed modeling based on observed data. Water Science & Technology 70(3): 495-501.

López-Tarazón, J.A., Batalla, R.J., Vericat, D., Balasch, J.C., 2010. Rainfall, runoff and sediment transport relations in a meso scale mountainous catchment: The River Isábena (Ebro basin). Catena 82: 23-34.

Meddi, M., Toumi, S., Assani, A.A., Eslamian, S., 2014. Regionalisation of rainfall erosivity in northern Algeria. International Journal Hydrology Science and Technology 4(2) :155-175.

Megnounif, A., Terfous, A., Ghenaim, A., Poulet, J.B., 2007. Key processes influencing erosion and sediment transport in a semi-arid Mediterranean area: the Upper Tafna catchment, Algeria. Hydrological Sciences Journal 52(6): 1271-1284.

Milliman, J.D., Sediment delivery from Mediterranean rivers: regional, global and temporal perspectives. Fluxes of small and medium-size Mediterranean rivers: Impact on coastal areas. In: Proceedings of the Mediterranean Science Commission, CIESM Workshop. 29 Mars-1 Avril 2006. Trogir, Croatia. pp. 67-71.

Mokhtari, E., 2005. Etude du transport solide par charriage dans l’Oued Mina et son impact sur l’envasement du barrage de Sidi M’hamed Ben Aouda (W, Relizane). Master's thesis. ENSH, Blida, Algeria. 95 p.

Najafova, N., 2022. System of measurs for soil erosion and protection. In: Proceedings of the International Soil Science Symposium on “Soil Science and Plant Nutrition”. 2-3 December 2022. Samsun, Türkiye. pp. 195-198.

Ochoa, P.A., Fries, A., Mejía, D., Burneo, J.I., Ruíz-Sinoga, J.D., Cerdà, A., 2016. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 140: 31–42.

Özdemir, N., 2020. Effects of land and plant managements on soil erodibility in the Turhal District of Tokat, Turkey. Eurasian Journal of Soil Science 9(4): 362-367.

Pirio, L., 2010. Géométrie anamorphique I : Abaques et Nomogrammes. Images des Mathématiques. CNRS, France. 21 p. Available at [Access date: 18.09.2023]: http://dml.mathdoc.fr/item/hal-00609226/

Plan Bleu, 2003. Les menaces sur les sols dans les pays méditerranéens. Etude bibliographique. Plan bleu pour la Méditerranée, Valbonne, France. 80p.

Remini, W., Remini, B., 2003. La sédimentation dans les barrages de l’Afrique du Nord. Courrier du Savoir 04: 65-69. Available at [Access date: 18.09.2023]: https://www.asjp.cerist.dz/en/article/77926

Rey, F., Ballais, J.L., Marre, A., Rovéra, G., 2004. Role of vegetation in protection against surface hydric erosion. Comptes Rendus Géoscience 336: 991–998.

Shen, H., Zheng, F., Wen, L., Han, Y., Hu, W., 2016. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research 155: 429-436.

Shirzadi, A., Shahabi, H., Nabiollahi, K., Taghizadeh-Mehrjardi, R., Lizaga, I., Clague, J. J., Sushant, S. K., Golmohamadi, F., Ahmad, A., 2022. Towards robust smart data-driven soil erodibility index prediction under different scenarios. Geocarta International 37(26): 13176-13209.

Touaibia, B., 2000. Erosion- Transport solide- Envasement de barrage. Cas du bassin versant de l’Oued Mina (Wilaya de Relizane). PhD thesis, I.N.A. El Harrach, Algeria. 175p. Available at [Access date: 18.09.2023]: http://localhost:8080/xmlui/handle/123456789/2405

Touaibia, B., Achite, M., 2003. Contribution to the mapping of specific erosion in the Wadi Mina basin in the semiarid zone of northern Algeria. Hydrological Sciences Journal 48(2): 235-242.

Touaibia, B., Aidaoui, A., Gomer, D., Achite, M., 2001. Temporal quantification and variability of sediment discharge in a semiarid area in northern Algeria. Hydrological Sciences Journal 46(1): 41-53.

Tournès, D., 2000. NOTES & DEBATS pour une histoire du calcul graphique. Revue d’histoire des mathématiques 6 : 127-161. Available at [Access date : 18.09.2023]: http://www.numdam.org/item/RHM_2000__6_1_127_0

Tran Van, Q., 1961. Nomographie et statistique. Revue de statistique appliquée 9(3): 47-76. Available at [Access date: 18.09.2023]: http://www.numdam.org/item?id=RSA_1961__9_3_47_0

Willmott, C. J., 1981.  On the validation of models. Physical Geography 2(2): 184-194.

Yang, S.L., Milliman, D.J., Li, P., Xu, K., 2011. 50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change 75: 14-20.

Zhou, P., Luukkanen, O., Tokola, T., Nieminen, J., 2008. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75: 319–325.



Eurasian Journal of Soil Science