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 Abstract 
Article Info Cadmium (Cd) presents a significant environmental threat due to its toxic nature and 

propensity to accumulate in various organs, posing serious health risks upon human 
exposure. This study focuses on the Sugovushan reservoir in Azerbaijan, aiming to 
comprehensively understand Cd behavior in soils subjected to varying water levels, 
shedding light on the intricate interplay between water quality and soil Cd content. 
Soil samples with distinct textures were collected from a agricultural area in 
Azerbaijan and subjected to an incubation experiment. The experiment, conducted at 
20±0.5°C for 10 days, involved four water levels (%100, %75, %50, and %25 of field 
capacity) in a randomized complete block design. Cd-contaminated water from 
Sugovushan reservoir was applied, and inorganic Cd fractions were determined after 
incubation. The sequential extraction method, as per Shuman's procedure, was 
employed to assess Cd distribution in exchangeable (EX-Cd), organic (OM-Cd), Mn 
oxide (MnO-Cd), amorphous Fe oxide (AFeO-Cd), and crystalline Fe oxide (CFeO-Cd) 
fractions. The soils exhibited varying textures (Sandy Clay Loam, Silty Loam, and Clay) 
with alkaline reactions, differing salinity, and low organic matter content. Despite 
somewhat elevated total Cd levels (1.75–2.66 mg/kg), the soils remained below the 3 
mg/kg contamination threshold. Water from Sugovushan reservoir, though alkaline, 
contained Cd concentrations exceeding agricultural use limits. Incubation with Cd-
contaminated water increased total Cd content in all soils, with SaCL exhibiting the 
highest susceptibility. Notably, the SaCL soil showed a significant increase in the 
exchangeable Cd fraction, emphasizing its environmental risk. This study underscores 
the importance of soil texture in influencing Cd mobility, especially in low-clay-
content soils. The heightened susceptibility observed in SaCL soil highlights the 
potential threat to food safety, emphasizing the need for sustainable agricultural 
practices and water management. 
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Introduction 
Cadmium (Cd) stands out as a particularly hazardous and mobile element in the environment due to its toxic 
nature and remarkable ability to substitute for calcium in minerals (Thornton, 1986; Alloway and Jackson, 
1991; Nies, 1999, 2003). The repercussions of Cd contamination extend beyond its environmental presence, 
as it tends to accumulate in various organs upon entry into the human body, posing serious health risks (Pan 
et al., 2010; Hajeb et al., 2014). Unlike some other toxic elements, such as mercury (Hg) and arsenic (As), Cd 
predominantly finds its way into the human diet through terrestrial pathways, with vegetables grown in 
regions characterized by elevated Cd concentrations in soil and groundwater being primary contributors 
(Sebastian and Prasad, 2014; Liu et al., 2017; Tefera et al., 2018). The nuanced bioavailability of Cd becomes 
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apparent in regional variations, exemplified by the differing Cd levels in rice cultivated in the southern and 
northern parts of China. These variations can be attributed to factors such as soil acidity, nitrogen fertilizer 
use, pollution through irrigation, and crop selection (Chen et al., 2018). 

Recognizing the significant threats posed by Cd to both human health and the environment, regulatory 
frameworks like the European Water Framework Directive and the European Groundwater Directive have 
implemented management plans aimed at mitigating Cd releases into the environment (EC, 2000, 2006). 
Various countries have responded by establishing threshold values for Cd concentrations in groundwater and 
drinking water, underscoring the necessity for robust monitoring and control measures (UNEP, 2010; WHO, 
2011). While numerous studies have delved into the behavior of Cd in soils and groundwater, exploring its 
agricultural impact, bioavailability, and environmental remediation (Carrillo‐González et al., 2006; Bigalke et 
al., 2017), many of these efforts have been compartmentalized, focusing on specific issues or localities. This 
has resulted in a fragmented understanding of Cd dynamics in diverse environments (Akbar et al., 2006; Karak 
et al., 2015). 

This study aims to contribute to the comprehensive understanding of Cd behavior in the environment, 
specifically focusing on the Sugovushan reservoir in Azerbaijan. By investigating the changes in Cd 
concentrations and fractions in soils subjected to different levels of water from the Sugovushan reservoir, we 
aim to shed light on the intricate interplay between water quality and soil Cd content. 

Material and Methods 
Soil sampling, preparation and analysis 

The soil samples with three distinct textures, intended for use in the incubation experiment, were collected 
from agricultural area in Azerbaijan, collected from a depth of 0-20 cm. The collected soil samples underwent 
meticulous cleaning to remove stones and plant residues from the soil surface. Subsequently, these soil 
samples were transported to the laboratory for further analysis. In the controlled laboratory conditions, the 
soil samples were subjected to a series of procedures. Initially, the samples were air-dried in a cool and shaded 
environment to prevent alterations in their chemical composition due to excessive heat or sunlight. Once 
dried, the soil samples were finely ground after eliminating any remaining moisture. This grinding process 
facilitated homogenization, ensuring uniformity for subsequent analyses. The soil samples were then sieved 
through a 2 mm mesh to achieve a consistent particle size, optimizing the analytical results. The prepared soil 
samples, now in a homogeneous and fine-grained state, were considered analytically ready and were utilized 
for subsequent investigations. Various parameters were determined in the conducted soil analyses using 
established scientific methods. The soil texture was determined using the hydrometer method as described 
by Bouyoucos (1962). pH and Electrical Conductivity (EC) were measured in a 1:1 (w/v) soil-to-distilled water 
suspension using a pH meter and EC meter (Peech, 1965; Bower and Wilcox, 1965). Organic matter content 
was assessed through wet oxidation with K2Cr2O7, following the method proposed by Walkley and Black 
(1934). Calcium carbonate (CaCO3) content was determined volumetrically using the Scheibler calimeter 
(Rowell, 2010). The water capacity (field capacity, wilting point, and available water) was determined as 
reported by Klute (1965) and Peters (1965). Additionally, available heavy metals (Fe, Cu, Zn, Mn, Cd, Pb, Ni) 
were determined using the DTPA extraction method, total heavy metals determined using the aqua regia + HF 
digestion method followed by analysis with Atomic Absorption Spectrophotometry (Lindsay and Norvell, 
1978, EN 13656, 2002). 

Water sampling, preparation and analysis 

Water samples, including those from Sugovushan reservoir (40.323985 N, 46.743843 E) in Azerbaijan, were 
collected for analysis. The water samples were promptly transported to the laboratory and filtered using 
Whatman No. 41 filter paper. pH and electrical conductivity analyses were conducted using a pH meter and 
an EC meter, respectively. The analysis of anions (Cl-, HCO3-, SO42-, NO2-, NO3-, PO43-.) and cations (Ca2+, Mg2+, 
Na++K+, NH4+) in the water followed the methods outlined by the US Salinity Laboratory Staff (1954). The 
contents of heavy metals (Fe, Cu, Zn, Mn, Cd, Pb, Ni) in the water were determined using an Atomic Absorption 
Spectrophotometer. 

Soil incubation experiment 

The experiment was conducted in a constant temperature incubator at 20±0.5°C for a duration of 10 days. The 
field capacity, wilting point, and available water content of the soils used in the experiment were determined 
according to the methodology reported by Klute (1965) and Peters (1965). The incubation experiment was 
established in a randomized complete block design with four different water levels (%100, %75, %50, and 
%25 of field capacity) and three replications. For this purpose, 50 g of each soil sample was measured and 
placed into a 100 mL plastic beaker. Plant-available water from Sugovushan reservoir, enriched with Cd, was 
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then added to the soil samples at the four different water levels mentioned above. After thorough mixing, all 
samples were covered with a piece of parafilm containing pores to facilitate air influx while preventing the 
evaporation of soil water. The samples were stored in the dark at a constant temperature of 20°C throughout 
the incubation period. On the 10th day of incubation, soil samples were collected, and the inorganic Cd fractions 
were determined. 

Cadmium Fractionation 

Total soil Cd was determined using aqua regia + HF digestion method (Shuman, 1979). Cadmium distribution  
in  the  exchangeable  (EX-Cd),  organic  (OM-Cd),  Mn  oxide  (MnO-Cd), amorphous Fe oxide (AFeO-Cd) and 
crystalline  Fe oxide fractions  (CFeO-Cd)  were deter-mined  according  to Shuman  method.  The  solids  
remaining  were  analyzed  by  complete dissolution  in  inorganic  acids (HCl–HNO3 and  HF)  and  the  fraction  
designed  residual (Res.-Cd) (Shuman, 1979; 1983; 1988). Cd contents of the all fractions and total Cd contents 
in the filtered solution was determined by atomic absorption spectrophotometry. The general procedures of 
the sequential extractions are given in Table 1.  

Table 1. Cd fractionation procedure 

Fraction Solution Soil, g Solution, ml Conditions 
Exchangeable  
(EX-Cd) 

1M Mg(NO3)2  

(pH 7) 
10 40 Shake 2h 

Organically complexed  
(OM-Cd) 

0.7M NaOCl  
(pH 8.5) 

10 20 
30 min in boling water bath. Stir 

occasionally. Repeat extraction 
Manganese oxide bound  
(MnO-Cd) 

0.1M NH2OH.HCl  
(pH 2) 

1* 50 Shake 30 min 

Amorphous iron oxide 
bound (AFeO-Cd) 

0.2M (NH4)2C2O4 in 0.2 M 
H2C2O2 (pH 3) 

1 50 Shake 4h in the dark 

Crystalline iron oxide bound 
(CFeO-Cd) 

0.1M ascorbic acid in the 
above oxalate solution 

1 50 
30 min in boling water bath. Stir 

occasionally 
*One gram from step 2 that is dried, ground and passed through a 0.5 mm screen 

Results  
The characteristics of the soils used in the incubation experiment are presented in Table 2. According to the 
obtained results, the soils selected for the experiment exhibit differences in terms of texture. Specifically, one 
of the experimental soils is classified as 'Sandy Clay Loam,' another as 'Silty Loam,' and the third as 'Clay.' All 
soils have an alkaline reaction and are calcareous. While the SaCL soil is non-saline, the others are saline. 
Additionally, the organic matter content in all soils is observed to be low. According to the analysis conducted 
by Kloke (1980), no heavy metal pollution is detected in the soils used for the experiment, and the heavy metal 
contents of the soils do not exceed their buffering capacity. Nevertheless, the total Cd contents of soils 
exhibiting different textural characteristics used in the incubation experiment were determined as 1.75, 2.12, 
and 2.66 mg/kg, respectively. It has been documented that soil texture, particularly the increase in clay and 
organic matter content, is associated with higher mean Cd concentrations in soils (Holmgren et al., 1993). The 
threshold value for considering soil as contaminated with Cd is generally set at concentrations above 3 mg/kg 
(Akbar et al., 2006). Concentration gradients are frequently observed in proximity to industrial installations, 
roads, and urban areas (Page et al., 1987; Joimel et al., 2016). Therefore, it can be asserted that the soils used 
in the experiment do not exhibit significant contamination with Cd. Since the soils for the experiment were 
sourced from agricultural areas in Azerbaijan, where phosphorus-containing chemical fertilizers are 
commonly used to enhance rice yields (Islamzade et al., 2024), the total Cd content of the soil, while somewhat 
elevated, remains below the threshold of 3 mg kg-1, indicating an acceptable level of non-contamination. 

The chemical properties of the water used in the incubation experiment are presented in Table 3. The 
Sugovushan Reservoir is fed by the Terter River. The River Terter is the largest river in the Karabakh region 
in Azerbaijan, serving the agricultural and domestic needs of over 400 thousand inhabitants in the 
surrounding area for many years. Unfortunately, between 1994 and 2020, the Terter River, which was 
occupied by Armenian forces, witnessed extensive contamination from numerous mining sites, with gold 
mining being the most detrimental. The lack of any legal norms for environmental protection in Karabakh 
during the occupation allowed mining operators to dispose of all their waste into the river. As a result, not 
only did the ecology suffer, but also the Terter River and the Sugovushan Reservoir on this river became 
polluted, primarily with Cd. This water sample demonstrates an alkaline reaction and contains some heavy 
metals within its composition. Among these heavy metals, the concentration of Cd exceeds the recommended 
upper limit for agricultural use of water, set at 0.01 mg L-1 (FAO, 1985), measuring at 1.64 mg L-1. However, 
for other heavy metals, there is not a significantly increased risk similar to that posed by Cd. 
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Table 2. Characteristics of the soils used in the incubation experiment 

  SaCL SiL C 
 

Sampling point 
38.6322740 N 
48.8646310 E 

40.2559770 N 
47.6289990 E 

40.5438710 N 
47.2880790 E 

T
ex

tu
re

 Sand, % 50,69 11,55 6,76 
Silt, % 15,91 78,58 7,69 
Clay, % 33,41 9,87 85,55 
Class Sandy Clay Loam Silty Loam Clay 

So
il

 w
at

er
 

p
ro

p
er

ti
e

s Field Capacity, % Vol 32,30 30,90 44,90 

Wilting point, % Vol 21,60 10,40 35,00 

Available Water, % Vol 10,70 20,50 9,90 
Bulk density, g cm-3 1,48 1,37 1,19 

C
h

em
ic

al
 

p
ro

p
er

ti
es

 pH 7,70 8,17 7,86 

EC, dSm-1 0,51 7,62 4,77 
CaCO3, % 12,93 15,06 6,69 
Organic matter, % 1,61 0,88 2,47 

A
va

il
ab

le
 h

ea
vy

 
m

et
al

s 

Fe, mg kg-1 65,50 6,21 35,71 
Cu, mg kg-1 7,54 1,80 7,74 
Zn, mg kg-1 0,58 0,31 0,43 
Mn, mg kg-1 23,01 3,76 7,34 
Cd, mg kg-1 0,20 0,16 0,15 
Pb, mg kg-1 2,48 3,58 3,25 
Ni, mg kg-1 3,68 2,15 3,59 

T
o

ta
l h

ea
vy

 
m

et
al

s 

Fe, % 3,12 3,81 5,39 
Cu, mg kg-1 84,82 75,36 95,15 
Zn, mg kg-1 191,17 185,58 296,61 
Mn, mg kg-1 0,18 0,13 0,25 
Cd, mg kg-1 1,75 2,12 2,66 
Pb, mg kg-1 86,85 93,19 95,85 
Ni, mg kg-1 75,69 65,48 86,15 

Cd-contaminated water from the Sugovushan reservoir was applied to soils of three different textures (SaCL, 
SiL, and C) in this experiment, and changes in the soil's total and Cd fractions were assessed after irrigation 
with 100%, 75%, 50%, and 25% of the available water content. Figure 1 illustrates these variations, including 
the initial Cd fractions of the soils before irrigation. According to the obtained results, all soils irrigated with 
Cd-contaminated water exhibited an increase in their total Cd content. This increase was found to be 
correlated with the amount of water applied to the soil. In effective agricultural irrigation, it is desirable for 
soil moisture levels to be at field capacity (Kumar et al., 2023). Initially, the Cd levels in SaCL, SiL, and C soils 
were 1.75, 2.12, and 2.66 mg kg-1, respectively. However, when soils were irrigated with 100% of the available 
water content, the total Cd contents increased to 2.10, 2.79, and 2.98 mg Cd kg-1 for SaCL, SiL, and C soils, 
respectively. A significant decrease in total Cd content was observed in all soils when the amount of applied 
water decreased. Similarly, previous studies have reported a significant increase in Cd and other heavy metal 
contents in soils irrigated with Cd-contaminated water (Chaoua et al., 2019; Orosun et al., 2023; Shahriar et 
al., 2023). 

Table 3. Chemical properties of the water used in the incubation experiment 

pH 8,00 Anions Heavy metals 
EC, dSm-1 3,10 Cl-, mg L-1 20,40 Fe, mg L-1 210,00 
Cations  HCO3-, mg L-1 114,60 Cu, mg L-1 <0,01 
Ca2+, mg L-1 38,1 SO42-, mg L-1 67,90 Zn, mg L-1 <0,01 
Mg2+, mg L-1 9,90 NO2-, mg L-1 0,01 Mn, mg L-1 4,17 
Na++K+, mg L-1 64,80 NO3-, mg L-1 1,43 Cd, mg L-1 1,64 
NH4+, mg L-1 0,15 PO43, mg L-1 0,10 Pb, mg L-1 9,82 
Total cations 112,95 Total anions 204,44 Ni, mg L-1 <0,01 

In the incubation experiment, although initially the entire set of soils used exhibited the CFeO-Cd fraction as 
the predominant fraction within inorganic Cd fractions, it was observed that OM-Cd and Res.-Cd contained the 
least Cd fraction (Figure 1). Numerous studies have demonstrated the influence of various soil 
physicochemical properties such as soil texture, organic matter content, and pH on the distribution of 
inorganic Cd fractions in soils (Anju and Banerjee, 2011; Nejad et al., 2021; Lian et al., 2022). Kızılkaya and 
Aşkın (2002), in their investigation of the distribution of Cd fractions and the relationships between soil 
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properties in agricultural fields in the Bafra Plain of Turkey, determined that the total Cd content in alluvial 
soils ranged from 1.83 to 2.73 mg kg-1. They found that 7.3-18.5% of total Cd in the soils consisted of EX-Cd, 
4.1-10.8% of OM-Cd, 6.1–7.6% of MnO-Cd, 5.2–8.7% of AFeO-Cd, and 5.8–7.2% of CFeO-Cd. Additionally, in 
this study, significant positive correlations were identified between the distribution of Cd fractions in soils 
and the clay content and cation exchange capacity of the soils. 

 
Figure 1. Changes in the different textural (SaCL, SiL and C) soil's total and Cd fractions were assessed after irrigation 

with 100%, 75%, 50%, and 25% of the available water content 
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After irrigation with Cd-enriched water in soils of different textures (SaCL, SiL, and C), increases were 
observed not only in the total Cd content of the soils but also in the Cd fractions. Remarkably, the increase in 
Cd fractions occurred in the EX-Cd fraction of the SaCL soil (Figure 1). This observation is attributed to the 
lower clay content of the SaCL soil compared to the other two soils (SiL and C). The exchangeable Cd fraction 
is particularly crucial in environmental risk assessments and soil quality management due to its susceptibility 
to plant uptake. This exchangeable fraction (EX-Cd) is closely monitored to assess and regulate the 
environmental impacts of Cd. Consequently, when low-clay-content soils are used for agricultural purposes in 
the presence of Cd-contaminated water, it is suggested that Cd can be more readily taken up by plants from 
the soil, potentially entering the food chain. This underscores the importance of monitoring and managing 
Cd's exchangeable fraction in mitigating the environmental implications associated with Cd-contaminated 
waters used for agricultural irrigation. 

Conclusion 
In conclusion, this study contributes valuable insights into the behavior of Cd in soils, particularly in the 
context of the Sugovushan reservoir in Azerbaijan. The incubation experiment revealed the nuanced response 
of soils with different textures to irrigation with Cd-contaminated water, emphasizing the importance of soil 
physicochemical properties in shaping Cd distribution. The SaCL soil, characterized by lower clay content, 
exhibited a heightened susceptibility to Cd mobility, particularly in the exchangeable fraction. This 
underscores the significance of considering soil texture in managing and mitigating the environmental risks 
associated with Cd-contaminated water used for agricultural purposes. 

The findings highlight the potential implications for food safety as Cd may readily enter the food chain when 
low-clay-content soils are irrigated with contaminated water. Therefore, sustainable agricultural practices 
and water management strategies need to consider soil characteristics to minimize the risk of Cd exposure. 
As future research endeavors unfold, a more comprehensive understanding of the intricate relationships 
between water quality, soil properties, and Cd behavior will be crucial for developing effective strategies to 
safeguard environmental and human health. 
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