Eurasian Journal of Soil Science

Volume 13, Issue 2, Mar 2024, Pages 111-124
DOI: 10.18393/ejss.1403723
Stable URL: http://ejss.fess.org/10.18393/ejss.1403723
Copyright © 2024 The authors and Federation of Eurasian Soil Science Societies



Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia

X

Article first published online: 12 Dec 2023 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 57 | 253

Dudnikova,T., Minkina,T., Sushkova,S., Barbashev,A., Antonenko,E., Shuvaev,E., Nemtseva,A., Maksimov,A., Litvinov,Y., Nevidomskaya,D., Mandzhieva,S., Gülser,C., Kızılkaya,R., 2024. Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia. Eurasian J Soil Sci 13(2):111-124. DOI : 10.18393/ejss.1403723
Dudnikova,T.Minkina,T.Sushkova,S.,Barbashev,A.Antonenko,E.Shuvaev,E.Nemtseva,A.Maksimov,A.Litvinov,Y.Nevidomskaya,D.Mandzhieva,S.Gülser,C.,& Kızılkaya,R. Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia Eurasian Journal of Soil Science, 13(2):111-124. DOI : 10.18393/ejss.1403723
Dudnikova,T.Minkina,T.Sushkova,S.,Barbashev,A.Antonenko,E.Shuvaev,E.Nemtseva,A.Maksimov,A.Litvinov,Y.Nevidomskaya,D.Mandzhieva,S.Gülser,C., and ,Kızılkaya,R."Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia" Eurasian Journal of Soil Science, 13.2 (2024):111-124. DOI : 10.18393/ejss.1403723
Dudnikova,T.Minkina,T.Sushkova,S.,Barbashev,A.Antonenko,E.Shuvaev,E.Nemtseva,A.Maksimov,A.Litvinov,Y.Nevidomskaya,D.Mandzhieva,S.Gülser,C., and ,Kızılkaya,R. "Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia" Eurasian Journal of Soil Science,13(Mar 2024):111-124 DOI : 10.18393/ejss.1403723
T,Dudnikova.T,Minkina.S,Sushkova.A,Barbashev.E,Antonenko.E,Shuvaev.A,Nemtseva.A,Maksimov.Y,Litvinov.D,Nevidomskaya.S,Mandzhieva.C,Gülser.R,Kızılkaya "Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia" Eurasian J. Soil Sci, vol.13, no.2, pp.111-124 (Mar 2024), DOI : 10.18393/ejss.1403723
Dudnikova,Tamara ;Minkina,Tatiana ;Sushkova,Svetlana ;Barbashev,Andrey ;Antonenko,Elena ;Shuvaev,Evgenyi ;Nemtseva,Anastasia ;Maksimov,Aleksey ;Litvinov,Yuri ;Nevidomskaya,Dina ;Mandzhieva,Saglara ;Gülser,Coşkun ;Kızılkaya,Rıdvan Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia. Eurasian Journal of Soil Science, (2024),13.2:111-124. DOI : 10.18393/ejss.1403723

How to cite

Dudnikova, T., Minkina, T., Sushkova, S., Barbashev, A., Antonenko, E., Shuvaev, E., Nemtseva, A., Maksimov, A., Litvinov, Y., Nevidomskaya, D., Mandzhieva, S., Gülser, C., Kızılkaya, R., 2024. Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia. Eurasian J. Soil Sci. 13(2): 111-124. DOI : 10.18393/ejss.1403723

Author information

Tamara Dudnikova , Southern Federal University, Rostov-on-Don, 344006, Russia
Tatiana Minkina , Southern Federal University, Rostov-on-Don, 344006, Russia
Svetlana Sushkova , Southern Federal University, Rostov-on-Don, 344006, Russia
Andrey Barbashev , Southern Federal University, Rostov-on-Don, 344006, Russia
Elena Antonenko , Southern Federal University, Rostov-on-Don, 344006, Russia
Evgenyi Shuvaev , Southern Federal University, Rostov-on-Don, 344006, Russia
Anastasia Nemtseva , Southern Federal University, Rostov-on-Don, 344006, Russia
Aleksey Maksimov , National Medical Research Centre for Oncology, Rostov-on-Don, 344006, Russia
Yuri Litvinov , Southern Federal University, Rostov-on-Don, 344006, Russia
Dina Nevidomskaya , Southern Federal University, Rostov-on-Don, 344006, Russia
Saglara Mandzhieva , Southern Federal University, Rostov-on-Don, 344006, Russia
Coşkun Gülser , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Türkiye
Rıdvan Kızılkaya , Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Türkiye

Publication information

Article first published online : 12 Dec 2023
Manuscript Accepted : 07 Dec 2023
Manuscript Received: 21 Jul 2023
DOI: 10.18393/ejss.1403723
Stable URL: http://ejss.fesss.org/10.18393/ejss.1403723

Abstract

The main regularities of pollutant distribution through the soil profile were established based on the analysis of the content of 15 priority PAHs in 29 soil sections of different soil types located in the coastal zone of the Lower Don and Taganrog Bay with different anthropogenic loads. It was shown that the total content of PAHs in the 0-20 cm layer of soils of coastal territories varies from 172 µg kg-1 to 16006 µg kg-1. In addition, according to the total pollution indicator, (Zc) determines the level of soil pollution, which varies from "not polluted" to "extremely polluted". The influence of pollution sources falls on the 0-20 cm layer of soils of different types and is especially pronounced for subordinate landscapes. With increasing sampling depth, the total PAH content decreases with the redistribution of individual compounds of the PAH group towards the dominance of low molecular weight and 4-ring compounds in the composition of the sum of 15 PAHs and depends largely on the content of organic matter and soil pH. Based on the cluster analysis results, the main factor determining the profile distribution of PAHs is the type of pollutant origin source and its intensity.

Keywords

Landscape, Fluvisols, pollution, migration of pollutants, priority PAHs, organic carbon, coastal zone, transformation of pollutants.

Corresponding author

References

Abbas, A.O., Brack, W., 2006. Polycyclic aromatic hydrocarbons in Niger Delta soil: contamination sources and profiles. International Journal of Environmental Science and Technology 2: 343–352.

Aemig, Q., Chéron, C., Delgenès, N., Jimenez, J., Houot, S., Steyer, J.P., Patureau, D., 2016. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. Waste Management 48: 389–396.

Atanassova, I.D., Brümmer, G.W., 2004. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe. Geoderma 120(1-2): 27–34.

Avessalomova I.A., Khoroshev A.V., Savenko A.V., 2016. Barrier function of floodplain and riparian landscapes in river runoff formation. In: Riparian zones. Characteristics, management practices, and ecological impacts, Pokrovsky, O.S., (Ed.). Nova Science Publishers, pp. 181-210.

Benhabib, K., Simonnot, M.O., Faure, P., Sardin, M., 2017. Evidence of colloidal transport of PAHs during column experiments run with contaminated soil samples. Environmental Science and Pollution Research 24: 9220–9228.

Boretti, A., Rosa, L., 2019. Reassessing the projections of the world water development report. NPJ Clean Water 2: 15.

Brümmer, G.W., Sören, T.B., 2002. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficit conditions. Soil Biology and Biochemistry 34(5): 733-735.

Bu, Q.W., Zhang, Z.H., Lu, S., He, F.P., 2009. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China. Environmental Geochemistry and Health 31: 119-131.

Cai, T., Ding, Y., Zhang, Z., Wang, X., Wang, T., Ren, Y., Dong, Y., 2019. Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environmental Pollution 254: 112981.

Certificate 27-08. Procedure of Measurements Benz(a)pyrene Content in Soils, Sediments and Sludges by Highly Effective Liquid Chromatography Method. State Register no. FR.1.31.2005.01725. 2008; 27p. Available at [Access date: 01.04.2008]: https://files.stroyinf.ru/Data2/1/4293809/4 293809324.htm?ysclid=ljg45vs6ub561614960  

Chaplygin, V., Dudnikova, T., Chernikova, N., Fedorenko, A., Mandzhieva, S., Fedorenko, G., Sushkova, S., Nevidomskaya, D., Minkina, T., Sathishkumar, P., Rajput, V.D., 2022. Phragmites australis cav. As a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere 308: 136409.

Clark, J.R., 2008. Coastal Zone Management Handbook. First edition. CRC Press, Boca Raton, FL, USA.

Dai, C., Han, Y., Duan, Y., Lai, X., Fu, R., Liu, S., Leon, K.H., Tu, Y., Zhou, L., 2022. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research 205: 112423.

Delegan, Y., Sushkova, S., Minkina, T., Filonov, A., Kocharovskaya, Y., Demin, K., Gorovtsov, A., Rajput, V.D., Zamulina, I., Grigoryeva, T., Dudnikova, T., Barbashev, A., Maksimov, A., 2022. Diversity and metabolic potential of a PAH-degrading bacterial consortium in technogenically contaminated haplic chernozem, Southern Russia. Processes 10: 2555.

Dong, W., Wan, J., Tokunaga, T.K., Gilbert, B., Williams, K.H., 2017. Transport and humification of dissolved organic matter within a semi-arid floodplain. Journal of Environmental Sciences 57: 24–32.

Dudnikova, T., Minkina, T., Sushkova, S., Barbashev, A., Antonenko, E., Konstantinova, E., Shuvaev, E., Nevidomskaya, D., Ivantsov, A., Bakoeva, G., Gorbunova, M., 2023. Background content of polycyclic aromatic hydrocarbons during monitoring of natural and anthropogenically transformed landscapes in the coastal area soils. Water 15(13): 2424.

Dudnikova, T., Sushkova, S., Minkina, T., Barbashev, A., Ferreira, C.S.S., Antonenko, E., Shuvaev, E., Bakoeva, G., 2023. Main factors in polycyclic aromatic hydrocarbons accumulations in the long-term technogenic contaminated soil. Eurasian Journal of Soil Science 12(3): 282–289.

Dymov, A.A., Gabov, D.N., 2015. Pyrogenic alterations of Podzols at the North-east European part of Russia: Morphology, carbon pools, PAH content. Geoderma 241-242: 230-237.

Fedorets, N.G., Bakhmet, O.N., Medvedeva, M.V., Akhmetova, G.V., Novikov, S.G., Tkachenko, Y.N., Solodovnikov, A.N., 2015. Heavy metals in the soils of Karelia. Akhmetova, G.V., (Ed.). Karelian Research Centre of the RAS, Petrozavodsk, Russia.

Fengpeng, H., Zhang, Z., Yunyang, W., Song, L., Liang, W., Qingwei, B., 2009. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. Journal of Environmental Sciences 21(5): 675–685.

Glazovskaya, M.A., 1998. Geochemistry of natural and technogenic landscapes of the USSR. High School, Moscow, Russia.

GOST 17.4.3.01-2017. Nature protection. Soils. General requirement for sampling. Standartinform, Moscow, Russia, 2018; p5. [in Russian]

Guidelines MU 2.1.7.730-99. Hygienic Evaluation of Soil in Residential Areas; Rospotrebnadzor: Moscow, Russia, 1999. [in Russian]

IARC, 2020. List of classifications, volumes 1-123.IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. WHO International Agency for Research on Cancer. Lyon, France. Available at [Access date: 25.07.2020]: https://monographs.iarc.fr/list-of-classifications-volumes/

ISO 13877-2005. Soil Quality-Determination of Polynuclear Aromatic Hydrocarbons—Method Using High-performance Liquid Chromatography. ISO: Geneva, Switzerland.

Kalinitchenko, V.P., Glinushkin, A.P., Minkina, T.M., Mandzhieva, S.S., Sushkova, S.N., Sukovatov, V.A., Il’ina, L.P., Makarenov, D.A., Zavalin, A.A., Dudnikova, T.S., Barbashev, A.I., Bren, D.V., Rajput, P., Batukaev, A.A., 2022. Intra-soil waste recycling provides safety of environment. Environmental Geochemistry and Health 44: 1355-1376.

Kasimov, N.S., Vlasov, D.V., 2015. Technophilicity of chemical elements at the beginning of the XXI century. Moscow University Geology Bulletin 5: 15–22.

Khan, M.M.H., Bryceson, I., Kolivras, K.N., Faruque, F., Rahman, M.M., Haque, U., 2015. Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. Regional Environmental Change 15: 241–250.

Korchagina, Z.A., Vadyunina, A.F., 1986. Methods of investigation of physical properties of soils. Third edition. Agropromizdat, Moscow, Russia. [in Russian]

Krauss, M., Wilcke, W., Martius, C., Bandeira, A.G., Garcia, M.V., Amelung, W., 2005. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution 135(1): 143–154.

Kuzmichev, I.K., Kolotukhina, E.L., Kostrov, V.N., 2020. Technological and economic aspects of increasing the capacity of the shipping channel. In: Proceedings of the Great Rivers-2020. 27–29 May 2020. Nizhniy Novgorod, Russia.

Martins, M., Ferreira, A.M., Vale, C., 2008. The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere 71: 1599–1606.

Mayer, S., Kölbl, A., Völkel, J., Kögel-Knabner, I., 2019. Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma 337: 679–690.

Mazarji, M., Minkina, T., Sushkova, S., Mandzhieva, S., Barakhov, A., Barbashev, A., Dudnikova, T., Lobzenko, I., Giannakis, S., 2022. Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals. Environmental Pollution 303: 119096.

Minkina, T., Fedorenko, G., Nevidomskaya, D., Konstantinovna, E., Pol’shina, T., Fedorenko, A., Chaplygin, V., Mandzhieva, S., Dudnikova, T., Hassan, T., 2021. The Morphological and functional organization of cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under soil pollution by potentially toxic elements. Water 13: 227.

Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Henry, M., Chiozza, F., Yigini, Y., 2023. Harmonized World Soil Database version 2.0. Food and Agriculture Organization of the United Nations and International Institute for Applied Systems Analysis, Rome, Laxenburg. 62p.

Ping, L.F., Luo, Y.M., Zhang, H.B., Li, Q.B., Wu, L.H., 2007. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution 147(2): 358–365.

Qiu, Y.Y., Gong, Y.X., Ni, H.G., 2019. Contribution of soil erosion to PAHs in surface water in China. Science of the Total Environment 686: 497–504.

Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., Deng, R., 2018. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment 610-611: 1154–1163.

Saeedi, M., Li, L.Y., Grace, J.R., 2018. Effect of organic matter and selected heavy metals on sorption of acenaphthene, fluorene and fluoranthene onto various clays and clay minerals. Environmental Earth Sciences 77: 305.

Santos, S.F., Ehler, C.N., Agardy, T., Andrade, F., Orbach, M.K., Crowder, L.B., 2019. Marine spatial planning. In: World Seas: an environmental evaluation. Sheppard, C., (Ed.). Vol. 3, Academic Press, London, UK, pp. 571–592.

Shi, R., Li, X., Yang, Y., Fan, Y., Zhao, Z., 2023. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China. Environmental Pollution 268: 115938.

Sun, K., Song, Y., He, F., Jing, M., Tang, J., Liu, R., 2021. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Science of the Total Environments 773: 145403.

Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., Dudnikova, T., Barbashev, A., Kizilkaya, R., 2020. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science 9(3): 242–253.

Tsibart, A.S., Gennadiev, A.N., Koshovskii, T.S., Gamova, N.S., 2016 Polycyclic aromatic hydrocarbons in pyrogenic soils of swampy landscapes of the Meshchera lowland. Eurasian Soil Science 49: 285–293.

Ukalska-Jaruga, A., Smreczak, B., Klimkowicz-Pawlas, A., 2019. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soils and Sediments 19: 1890-1900.

US Environmental Protection Agency, 2020. Integrated Risk Information System (IRIS). Office of Research and Development, Washington DC, USA. Available at [Access date: 13.06.2023]: https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm

Xu, Y., Shi, H., Fei, Y., Wang, C., Mo, L., Shu, M., 2021. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability 13(2): 511.

Yang, W., Lang, Y.-H., Bai, J., Li, Z.-Y., 2015. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China. Ecological Engineering 74: 117-124.

Yunker, M.B., Macdonald, R.W., Ross, P.S., Johannessen, S.C., Dangerfield, N., 2015. Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada. Organic Geochemistry 89-90: 80–116.

Zhang, J., Fan, S.K., 2016. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction. Journal of Hazardous Materials 320: 114–122.

Zhao, Y., Li, J., Qi, Y., Guan, X., Zhao, C., Wang, H., Zhu, S., Fu, G., Zhu, J., He, J., 2021. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the tidal creek water of coastal tidal flats in the Yellow River Delta, China. Marine Pollution Bulletin 173: 113110.

Abstract

The main regularities of pollutant distribution through the soil profile were established based on the analysis of the content of 15 priority PAHs in 29 soil sections of different soil types located in the coastal zone of the Lower Don and Taganrog Bay with different anthropogenic loads. It was shown that the total content of PAHs in the 0-20 cm layer of soils of coastal territories varies from 172 µg kg-1 to 16006 µg kg-1. In addition, according to the total pollution indicator, (Zc) determines the level of soil pollution, which varies from "not polluted" to "extremely polluted". The influence of pollution sources falls on the 0-20 cm layer of soils of different types and is especially pronounced for subordinate landscapes. With increasing sampling depth, the total PAH content decreases with the redistribution of individual compounds of the PAH group towards the dominance of low molecular weight and 4-ring compounds in the composition of the sum of 15 PAHs and depends largely on the content of organic matter and soil pH. Based on the cluster analysis results, the main factor determining the profile distribution of PAHs is the type of pollutant origin source and its intensity.

Keywords: Synchrotron radiation (SR), heavy metals, ore, spectroscopy, XRD, XAFS, FTIR, SRμCT.

References

Abbas, A.O., Brack, W., 2006. Polycyclic aromatic hydrocarbons in Niger Delta soil: contamination sources and profiles. International Journal of Environmental Science and Technology 2: 343–352.

Aemig, Q., Chéron, C., Delgenès, N., Jimenez, J., Houot, S., Steyer, J.P., Patureau, D., 2016. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. Waste Management 48: 389–396.

Atanassova, I.D., Brümmer, G.W., 2004. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe. Geoderma 120(1-2): 27–34.

Avessalomova I.A., Khoroshev A.V., Savenko A.V., 2016. Barrier function of floodplain and riparian landscapes in river runoff formation. In: Riparian zones. Characteristics, management practices, and ecological impacts, Pokrovsky, O.S., (Ed.). Nova Science Publishers, pp. 181-210.

Benhabib, K., Simonnot, M.O., Faure, P., Sardin, M., 2017. Evidence of colloidal transport of PAHs during column experiments run with contaminated soil samples. Environmental Science and Pollution Research 24: 9220–9228.

Boretti, A., Rosa, L., 2019. Reassessing the projections of the world water development report. NPJ Clean Water 2: 15.

Brümmer, G.W., Sören, T.B., 2002. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficit conditions. Soil Biology and Biochemistry 34(5): 733-735.

Bu, Q.W., Zhang, Z.H., Lu, S., He, F.P., 2009. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China. Environmental Geochemistry and Health 31: 119-131.

Cai, T., Ding, Y., Zhang, Z., Wang, X., Wang, T., Ren, Y., Dong, Y., 2019. Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environmental Pollution 254: 112981.

Certificate 27-08. Procedure of Measurements Benz(a)pyrene Content in Soils, Sediments and Sludges by Highly Effective Liquid Chromatography Method. State Register no. FR.1.31.2005.01725. 2008; 27p. Available at [Access date: 01.04.2008]: https://files.stroyinf.ru/Data2/1/4293809/4 293809324.htm?ysclid=ljg45vs6ub561614960  

Chaplygin, V., Dudnikova, T., Chernikova, N., Fedorenko, A., Mandzhieva, S., Fedorenko, G., Sushkova, S., Nevidomskaya, D., Minkina, T., Sathishkumar, P., Rajput, V.D., 2022. Phragmites australis cav. As a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere 308: 136409.

Clark, J.R., 2008. Coastal Zone Management Handbook. First edition. CRC Press, Boca Raton, FL, USA.

Dai, C., Han, Y., Duan, Y., Lai, X., Fu, R., Liu, S., Leon, K.H., Tu, Y., Zhou, L., 2022. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research 205: 112423.

Delegan, Y., Sushkova, S., Minkina, T., Filonov, A., Kocharovskaya, Y., Demin, K., Gorovtsov, A., Rajput, V.D., Zamulina, I., Grigoryeva, T., Dudnikova, T., Barbashev, A., Maksimov, A., 2022. Diversity and metabolic potential of a PAH-degrading bacterial consortium in technogenically contaminated haplic chernozem, Southern Russia. Processes 10: 2555.

Dong, W., Wan, J., Tokunaga, T.K., Gilbert, B., Williams, K.H., 2017. Transport and humification of dissolved organic matter within a semi-arid floodplain. Journal of Environmental Sciences 57: 24–32.

Dudnikova, T., Minkina, T., Sushkova, S., Barbashev, A., Antonenko, E., Konstantinova, E., Shuvaev, E., Nevidomskaya, D., Ivantsov, A., Bakoeva, G., Gorbunova, M., 2023. Background content of polycyclic aromatic hydrocarbons during monitoring of natural and anthropogenically transformed landscapes in the coastal area soils. Water 15(13): 2424.

Dudnikova, T., Sushkova, S., Minkina, T., Barbashev, A., Ferreira, C.S.S., Antonenko, E., Shuvaev, E., Bakoeva, G., 2023. Main factors in polycyclic aromatic hydrocarbons accumulations in the long-term technogenic contaminated soil. Eurasian Journal of Soil Science 12(3): 282–289.

Dymov, A.A., Gabov, D.N., 2015. Pyrogenic alterations of Podzols at the North-east European part of Russia: Morphology, carbon pools, PAH content. Geoderma 241-242: 230-237.

Fedorets, N.G., Bakhmet, O.N., Medvedeva, M.V., Akhmetova, G.V., Novikov, S.G., Tkachenko, Y.N., Solodovnikov, A.N., 2015. Heavy metals in the soils of Karelia. Akhmetova, G.V., (Ed.). Karelian Research Centre of the RAS, Petrozavodsk, Russia.

Fengpeng, H., Zhang, Z., Yunyang, W., Song, L., Liang, W., Qingwei, B., 2009. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. Journal of Environmental Sciences 21(5): 675–685.

Glazovskaya, M.A., 1998. Geochemistry of natural and technogenic landscapes of the USSR. High School, Moscow, Russia.

GOST 17.4.3.01-2017. Nature protection. Soils. General requirement for sampling. Standartinform, Moscow, Russia, 2018; p5. [in Russian]

Guidelines MU 2.1.7.730-99. Hygienic Evaluation of Soil in Residential Areas; Rospotrebnadzor: Moscow, Russia, 1999. [in Russian]

IARC, 2020. List of classifications, volumes 1-123.IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. WHO International Agency for Research on Cancer. Lyon, France. Available at [Access date: 25.07.2020]: https://monographs.iarc.fr/list-of-classifications-volumes/

ISO 13877-2005. Soil Quality-Determination of Polynuclear Aromatic Hydrocarbons—Method Using High-performance Liquid Chromatography. ISO: Geneva, Switzerland.

Kalinitchenko, V.P., Glinushkin, A.P., Minkina, T.M., Mandzhieva, S.S., Sushkova, S.N., Sukovatov, V.A., Il’ina, L.P., Makarenov, D.A., Zavalin, A.A., Dudnikova, T.S., Barbashev, A.I., Bren, D.V., Rajput, P., Batukaev, A.A., 2022. Intra-soil waste recycling provides safety of environment. Environmental Geochemistry and Health 44: 1355-1376.

Kasimov, N.S., Vlasov, D.V., 2015. Technophilicity of chemical elements at the beginning of the XXI century. Moscow University Geology Bulletin 5: 15–22.

Khan, M.M.H., Bryceson, I., Kolivras, K.N., Faruque, F., Rahman, M.M., Haque, U., 2015. Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. Regional Environmental Change 15: 241–250.

Korchagina, Z.A., Vadyunina, A.F., 1986. Methods of investigation of physical properties of soils. Third edition. Agropromizdat, Moscow, Russia. [in Russian]

Krauss, M., Wilcke, W., Martius, C., Bandeira, A.G., Garcia, M.V., Amelung, W., 2005. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution 135(1): 143–154.

Kuzmichev, I.K., Kolotukhina, E.L., Kostrov, V.N., 2020. Technological and economic aspects of increasing the capacity of the shipping channel. In: Proceedings of the Great Rivers-2020. 27–29 May 2020. Nizhniy Novgorod, Russia.

Martins, M., Ferreira, A.M., Vale, C., 2008. The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere 71: 1599–1606.

Mayer, S., Kölbl, A., Völkel, J., Kögel-Knabner, I., 2019. Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma 337: 679–690.

Mazarji, M., Minkina, T., Sushkova, S., Mandzhieva, S., Barakhov, A., Barbashev, A., Dudnikova, T., Lobzenko, I., Giannakis, S., 2022. Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals. Environmental Pollution 303: 119096.

Minkina, T., Fedorenko, G., Nevidomskaya, D., Konstantinovna, E., Pol’shina, T., Fedorenko, A., Chaplygin, V., Mandzhieva, S., Dudnikova, T., Hassan, T., 2021. The Morphological and functional organization of cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under soil pollution by potentially toxic elements. Water 13: 227.

Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Henry, M., Chiozza, F., Yigini, Y., 2023. Harmonized World Soil Database version 2.0. Food and Agriculture Organization of the United Nations and International Institute for Applied Systems Analysis, Rome, Laxenburg. 62p.

Ping, L.F., Luo, Y.M., Zhang, H.B., Li, Q.B., Wu, L.H., 2007. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution 147(2): 358–365.

Qiu, Y.Y., Gong, Y.X., Ni, H.G., 2019. Contribution of soil erosion to PAHs in surface water in China. Science of the Total Environment 686: 497–504.

Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., Deng, R., 2018. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment 610-611: 1154–1163.

Saeedi, M., Li, L.Y., Grace, J.R., 2018. Effect of organic matter and selected heavy metals on sorption of acenaphthene, fluorene and fluoranthene onto various clays and clay minerals. Environmental Earth Sciences 77: 305.

Santos, S.F., Ehler, C.N., Agardy, T., Andrade, F., Orbach, M.K., Crowder, L.B., 2019. Marine spatial planning. In: World Seas: an environmental evaluation. Sheppard, C., (Ed.). Vol. 3, Academic Press, London, UK, pp. 571–592.

Shi, R., Li, X., Yang, Y., Fan, Y., Zhao, Z., 2023. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China. Environmental Pollution 268: 115938.

Sun, K., Song, Y., He, F., Jing, M., Tang, J., Liu, R., 2021. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Science of the Total Environments 773: 145403.

Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., Dudnikova, T., Barbashev, A., Kizilkaya, R., 2020. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science 9(3): 242–253.

Tsibart, A.S., Gennadiev, A.N., Koshovskii, T.S., Gamova, N.S., 2016 Polycyclic aromatic hydrocarbons in pyrogenic soils of swampy landscapes of the Meshchera lowland. Eurasian Soil Science 49: 285–293.

Ukalska-Jaruga, A., Smreczak, B., Klimkowicz-Pawlas, A., 2019. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soils and Sediments 19: 1890-1900.

US Environmental Protection Agency, 2020. Integrated Risk Information System (IRIS). Office of Research and Development, Washington DC, USA. Available at [Access date: 13.06.2023]: https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm

Xu, Y., Shi, H., Fei, Y., Wang, C., Mo, L., Shu, M., 2021. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability 13(2): 511.

Yang, W., Lang, Y.-H., Bai, J., Li, Z.-Y., 2015. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China. Ecological Engineering 74: 117-124.

Yunker, M.B., Macdonald, R.W., Ross, P.S., Johannessen, S.C., Dangerfield, N., 2015. Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada. Organic Geochemistry 89-90: 80–116.

Zhang, J., Fan, S.K., 2016. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction. Journal of Hazardous Materials 320: 114–122.

Zhao, Y., Li, J., Qi, Y., Guan, X., Zhao, C., Wang, H., Zhu, S., Fu, G., Zhu, J., He, J., 2021. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the tidal creek water of coastal tidal flats in the Yellow River Delta, China. Marine Pollution Bulletin 173: 113110.



Eurasian Journal of Soil Science