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 Abstract 
Article Info Psamments is sandy soil with a texture class of fine loamy sand or coarser in all 

layers, deposited sands such as dunes in beach lands with low soil biological fertility. 
Adding mycorrhizal, soil amendments, and inorganic fertilizers could improve soil 
fertility. This research aimed to investigate the effect of mycorrhizal, soil 
amendments, and inorganic fertilizers on soil organic carbon (SOC), microbial 
biomass carbon (MBC), glomalin-related soil protein (GRSP), and root infections in 
Psamments. This research was a pot experimental in screenhouse, arranged in a 
factorial completely randomized design with three factors: three of mycorrhizal 
doses, M0 = 0 spore pot-1, M1 = 3 spores pot-1 and M2 = 6 spores pot-1; three types of 
soil amendments, P0 = non amendment, P1 = cow dung 60 t ha-1, P2 = rice husk 
biochar (RHB) 25 t ha-1; and two doses of inorganic fertilizer, A0 = 0 kg ha-1, A1 = 100 
kg ha-1 NPK (15:15:15) fertilizer, replied three times. The results showed that 
mycorrhizal combination with RHB and inorganic fertilizer increased MBC up to 23 
times than control. The combination of mycorrhizal-cow dung-inorganic fertilizer 
was the highest of total-GRSP (4.4 times) and mycorrhizal dose 6 spores pot-1 with 
both amendments and inorganic fertilizer increase root infection up to 90%. It was 
proven that mycorrhizal with soil amendments and inorganic fertilizers could 
improve the microbial properties of Psamments.  
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Introduction 
The nature that finite of land availability causes the emergence of a tight full competition for land use. This 
usually occurs between the agricultural and non-agricultural sectors, those resulting in actions to convert the 
function of agricultural land (Agricultural Land Conversion) (Sitko and Jayne, 2014). The agricultural land 
conversion to non-agricultural functions has increased yearly due to the high human need for shelter (Rondhi 
et al., 2018). Somehow, the need for food has also increased, in line with the increasing population in Indonesia 
(Safitri and Sihaloho, 2020). Azadi et al. (2011) also stated that the most common problem in developing 
countries is a massive population and high food consumption. The better solution to this problem is 
agricultural extensification by managing sub-optimal soil such as sandy soil or Psamments (Handika et al., 
2016). 

Countries worldwide know that Indonesia is a very large archipelagic country with a total of 17,480 islands 
(Torry and Kusumo, 2010) spread from Sabang to Merauke. The ocean bounds each island, and the border 
between the edge of the island and the ocean is called the coastline (Alfahmi et al., 2019). Indonesia's coastline 
is composed of loosely structured soil, the particles are not bound together, and there are no clay particles, 
called sandy soil or Psamments (Vezzani et al., 2018). Psamments in Indonesia, approximately about 
1,060,000 ha and potential to cultivate (Kelland et al., 2020). Nevertheless, there are several obstacles in the 
use of lands such as arid environmental conditions (Meftah et al., 2019), low numbers of microorganisms 
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(Pakbaz et al., 2018), and low of biological activities (Wong et al., 2020), so the decomposition process is not 
going well and humification is not running optimally (Goebel et al., 2011), and not soil aggregation is created. 
As a result, organic material is not well decomposed and low in content, so the soil fertility is not optimal and 
less supportive of plant growth. The low biological activity of Psamments is caused by physical problems of 
the soil and climate, especially microclimate which are less friendly and become a barrier to plants suitable 
for growth. 

Solving the problem of Psamments using mycorrhizal, especially endomycorrhizal according to Bai et al. 
(2002) was effective because mycorrhizal plays an active role in critical conditions by increasing nutrient 
uptake of phosphorus (Clausing and Polle, 2020) and other essential microelements (Zn, Co, and Mo), 
increasing soil aggregation so that soil microbial activity that is beneficial to plants also increases and protects 
plants from root pathogens (Cheng et al., 2022). Samuel and Veeramani (2021) also stated by their research 
by comparing the growth of plants with mycorrhizal colonization and none in the same soil conditions. The 
result showed that plants with mycorrhizal colonization absorb nutrients more significantly than non-
mycorrhizal colonization. The problem of Psamments can also be overcome by providing a soil amendment to 
improve the characteristics of biology, chemistry, and soil physics. The biological characteristics of soils were 
markedly enhanced by the application of solid biofertilizers and organic amendments, particularly SOC 
(Fitriatin et al., 2021). Sukartono et al. (2022) reported that biochar-based organic amendments significantly 
enhanced soil organic carbon and cation exchange capacity in the sandy loam soils. The long-term carbon 
absorption and glyphosate-biochar interaction during adsorption can be enhanced by rice husk biochar. 
Enhancing the cation exchange capacity, electrical conductivity, pH H2O, and soil organic matter, Inceptisols 
ameliorated with rice husk biochar raised the soil surface charge (ΔpH) (Herviyanti et al., 2022) and increased 
fertilizer absorption by root (Nurmalasari et al., 2021). 

Prasad and Kothari (2022), the application of cow dung to soil had some advantages to yield, cation exchange 
capacity (CEC), soil organic matter percentage, pH, and direct impact on food security and human health. The 
low fertility of Psamments can be improved by applying inorganic fertilizer (Sharma et al., 2020) because it 
will provide a sufficient supply of nutrients for plant growth. Various studies that have been conducted have 
yielded less than optimal results. Hapsoh et al. (2017) state that the application of inorganic fertilizers resulted 
in the lowest growth because the nutrients supplied by inorganic fertilizers are leached due to sandy soil 
having loose consistency (Fang et al., 2021). Likewise, a single application of rice husk biochar has no 
significant effect on SOC. Adding mycorrhizal alone does not significantly affect nutrient absorption (Sun et 
al., 2022).  

The novelty of this research is three treatment combinations of mycorrhizal, soil amendments, and inorganic 
fertilizer to improve microbial characteristics in Psamments. Thus, the aimed of the research was to 
investigate the effect of three treatment combinations on soil organic carbon (SOC), microbial biomass carbon 
(MBC), glomalin-related soil protein (GRSP), and root infections in Psamments through a pot experiment.  

Material and Methods 
This research was conducted for 6 months at the green house experimental garden Faculty of Agriculture, 
Universitas Sebelas Maret located in Jumantono, Karanganyar, Indonesia. A pot experiment arranged with a 
factorial Completely Randomized Design consisting of three treatment factors: mycorrhizal, types of soil 
amendments, and doses of inorganic fertilizers. The mychorrhizal fungus used in the experiment is 
endomycorrhizal, consist of Glomus manihotis, Glomus intraradices, Glomus aggregatum, Acaulospora sp., 
Gigaspora sp., that total spore density is 33.2% spore/50grams. The characteristics of cow dung: pH H2O (1:5) 
7.88; total organic carbon (TOC) 16.62% (dry combustion) (Soil Survey Staff, 2022); total Nitrogen 0.64% 
(Kjeldahl) (FAO, 2021), and C/N Ratio 26.39. The characteristics of rice husk biochar: water content 8.11%, 
pH H2O (1:5) 6.14; total organic carbon (TOC) 18.07%; total Nitrogen 0.54% (Kjeldahl), and C/N Ratio 33.3. 
Mycorrhizal dose consists of three levels, namely 0 spore/pot (M0), 3 spores/pot (M1), 6 spores/pot (M2), 
three types of soil amendments: non amendment (P0), cow dung 60 t ha-1 (P1), rice husk biochar (RHB) 25 t 
ha-1 (P2), and two levels of inorganic fertilizers, 0 kg ha-1 (A0) and 100 kg ha-1 (A1) NPK fertilizer (15:15:15). 
There were 18 treatment combinations with 3 replications so there were 54 experimental units. 

The soil used was Psamments from Bantul Regency, Yogyakarta Province, Indonesia. The initial soil analysis 
of Psamments according to Page et al. (1982), the result showed that pH H2O (1:2.5) 7.12; soil organic carbon 
0.18%; cation exchange capacity 4.43 cmol kg-1; total N 0.015%; available P2O5 7.34 mg kg-1, available K 0.27 
cmol kg-1; and soil texture was sand (sand 92.23%; silt 6.81%; and clay 0.96%). According to soil fertility 
category by Husein et al. (2021), the parameters of pH H2O is neutral, SOC, CEC, total nitrogen, available P2O5, 
and available K are very poor. Based on the initial soil analysis, it can be concluded that the Psamments had 
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low fertility. There are many steps of this research. First, sieving soil with a 2 mm sieve to separate the soil 
fraction from the rock. Next, a quantity of soil weighing 10 kg was carefully measured and thereafter placed 
within a polybag. Subsequently, the soil was combined with the appropriate soil amendments based on the 
designated treatment and subjected to a four-week incubation period. After 4 weeks of incubation, planting 
red chili (Capsicum annuum L.) seedlings is carried out together with the mycorrhizal application according to 
the treatment. Inorganic fertilizers were applied a week after planting.  

Watering is done by adding the water until field capacity and weeding every 2 days until 110 days after 
planting. At 110 days, the soil and root sample was collected. Soil samples were analyzed including SOC 
(Walkey and Black) (Black et al., 2016), microbial biomass carbon (fumigation and extraction), soil sample 
extracted with 0.5 M K2SO4, shaked for 30 minutes and filtered with Whatman 42, and then fumigated, last 
measured the absorbance using a spectrophotometer at 561 nm (Vance et al., 1987), easily extracted glomalin 
(EE-GRSP) by autoclaving soil samples with sodium citrate 20 Mm pH 7 for 30 minutes, total-GRSP by 
autoclaving of soil samples with 50 Mm sodium citrate pH 8 for one hour (Wright and Upadhyaya, 1998). 
Analysis of root samples includes calculating root infection (Phillips and Hayman, 1970). The data were 
subjected to statistical analysis using a one-way analysis of variance (ANOVA) test with a significance level of 
5% and DMRT test level of 5% with the Minitab version 16. To determine the relationship between variables 
using the Pearson correlation test. 

Results and Discussion   

Effects of mycorrhizal, soil amendments and inorganic fertilizers on Psamments characteristics 

Soil organic carbon (SOC) 

The application of cow dung significantly affected to increase SOC, levels up to 2.36 times compared to non-
amendment (Figure 1). Biochar rice husk application increased SOC value 1.71 times than non-amendment, 
the lowest is in non-amendment (0.14%). Ebido et al. (2021) reported that the adding of rice husk biochar 
increased soil organic carbon generally, with the greatest increments (37%) in maximum rate. Organic 
amendment have been found to contribute more to soil organic carbon (SOC) than inorganic fertilizers 
(Supriyadi et al., 2018). Saleem et al. (2022) stated that biochar applied to sandy loam soil can increase humic 
acid, fulfill acid, and impact the soil's total SOC. Baiamonte et al. (2021) also stated that biochar was used as a 
recommendation for the restoration of degraded and marginal lands through increased SOC and nutrients to 
increase crop productivity. He et al. (2020) reported that mycorrhizal application contributes to the SOC 
presence. The mechanism is mycorrhizal symbiosis association shaped extraradical hyphae and its hyphal 
turnover to the soil and added SOC in the form of glomalin (Paterson et al., 2016; Syamsiyah et al., 2018). This 
statement was assured by the positive correlation (r=0.467**) between SOC and glomalin. Meanwhile, 
mycorrhizal hyphae have the ability to accelerate litter's decomposition to aid the accumulation of SOC 
presence and increase plant capability to uptake Nitrogen (Hodge and Fitter, 2010). Mycorrhizal also has a 
function to promote SOC’s retention into aggregates (Wei et al., 2019). 

 

Figure 1. Effect of mycorrhizal, soil amendments, and inorganic fertilizers on soil organic carbon in Psamments 
Remarks: Means in a column followed by the same letters show no significant difference in the DMRT test at a 5% significance level. 
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Glomalin Related Soil Protein (GRSP) 

GRSP consists of easily extracted glomalin (EE-GRSP) (the latest glomalin fraction) and total-GRSP (the 
number of old and most recent fractions) (Wright and Upadhyaya, 1998; Rillig 2004; Liu et al. 2020), it is 
protein-bound soil which is a product of the turnover of hyphal mycelium during mycorrhizal activity (Balami 
et al.,  2020). Recently, the T-GRSP was divided into easily extract glomalin (EE-GRSP) and difficult extract 
glomalin (DEG), but only T-GRSP and EE-GRSP were measured in this research. It means that EE-GRSP is a 
component of T-GRSP and build it up.  

F test results showed that mycorrhizal treatment, soil amendments, and inorganic fertilizer had a significant 
effect on easily extracted glomalin (EE-GRSP) (P=0,000**) and T-GRSP (P=0.042 *). Application of mycorrhizal 
(6 spores/pot) with cow dung (M2P1A0) gave the best EE-GRSP (0.29 mg g-1). Interaction of mycorrhizal 6 
spores/pot, cow dung, and inorganic fertilizer (M1P1A1) was the highest T-GRSP (0.34 mg g-1), increase up to 
4.25 times than M0P0A0 that having the lowest value of EE-GRSP (0.05 mg g-1) and T-GRSP (0.08 mg g-1). 

Syamsiyah et al. (2018) mentioned that glomalin as an organic-C deposit in the soil due to its long lifetime in 
soil, it also contains organic-C as the main binding (Li et al., 2020) material that stabilizes soil. Glomalin 
contained in the spore walls and hyphal when turnover during fungal activity as the main mechanism for 
glomalin deposition to the soil also describes the functionality of glomalin away from the hyphal wall to the 
soil during the life of fungal mycelium (Singh, 2012). The highest EE-GRSP was found in mycorrhizal treatment 
(6 spores/pot) with cow dung (M2P1A0) with an increase of 5.8 times compared to control (Table 1). Total 
GRSP was highest in mycorrhizal treatment (3 spores/pot), cow dung, inorganic fertilizer (M1P1A1) with a 
4.4 times increase compared to controls (Table 1). Syamsiyah et al. (2018) reported that mycorrhizal 
application increases available and total glomalin. Increased glomalin caused by mycorrhizal hyphae which 
are inoculated into the soil will produce a compound in the form of glycoprotein known as glomalin (Rillig, 
2004).  

Table 1. Effect of mycorrhizal, soil amendments and inorganic fertilizers on easily extracted and total glomalin in 
Psamments 

Treatments 

Easily Extracted 
Glomalin  

(EE-GRSP)  

Total glomalin 
related soil protein  

(T-GRSP) 

mg g-1 

Control 0,05 j 0,08 e 
No Mycorrhizal-Cow dung-Non fertilizer 0,16 de 0,3 a 
No Mycorrhizal-RHB-No fertilizer 0,06 j 0,15 bcde 
Mycorrhizal 3 spores -No Amendment-No fertilizer 0,14 defg 0,21 abcde 
Mycorrhizal 3 spores -Cow dung -No fertilizer 0,22 bc 0,29 ab 
Mycorrhizal 3 spores -RHB -No fertilizer 0,06 j 0,11 de 
Mycorrhizal 6 spores - No Amendment -No fertilizer 0,08 ghij 0,26 abc 
Mycorrhizal 6 spores – Cow dung -No fertilizer 0,29 a 0,3 a 
Mycorrhizal 6 spores - RHB -No fertilizer 0,07 hij 0,09 e 
No Mycorrhizal-No Amendment-100 kg ha-1 inorganic fertilizer 0,07 ij 0,08 e 
No Mycorrhizal-Cow dung-100 kg ha-1 inorganic fertilizer 0,27 ab 0,31 a 
No Mycorrhizal-RHB-100 kg ha-1 inorganic fertilizer 0,14 def 0,11 de 
Mycorrhizal 3 spores-No Amendment-100 kg ha-1 inorganic fertilizer 0,12 efghi 0,13 cde 
Mycorrhizal 3 spores-Cow dung-100 kg ha-1 inorganic fertilizer 0,17 cd 0,34 a 
Mycorrhizal 3 spores-RHB-100 kg ha-1 inorganic fertilizer 0,09 ij 0,11 de 
 Mycorrhizal 6 spores-No Amendment-100 kg ha-1 inorganic fertilizer 0,07 ij 0,09 de 
Mycorrhizal 6 spores-Cow dung-100 kg ha-1 inorganic fertilizer 0,1 fghij 0,23 abcd 
Mycorrhizal 6 spores-RHB-100 kg ha-1 inorganic fertilizer 0,13 defgh 0,13 cde 

Remarks: Means in a column followed by the same letters show no significant difference in the DMRT test at a 5% significance level. 

Prasad and Kothari (2022) revealed that cow-dung treatment gives high glomalin value because it increases 
soil nutrition and biological activity, produces growth stimulating substances that cause mycorrhizal hyphae 
to develop and glomalin as adhesive and hyphae protector (Driver et al., 2005). GRSP with organic carbon and 
nitrogen in the soil is a source of nutrients available for plants that are very important for nutrient cycles and 
ecosystems (Treseder and Turner, 2007). McClellan et al. (2022) also mentioned that GRSP operationally 
defined protein fraction of soil organic matter, that hypothesized to build up contribution to long-term soil 
aggregation, soil stability, and also long-term soil carbon storage and it means the content of glomalin was 
affected especially by SOC and SOC itself significantly correlates with GT. 
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Microbial Biomass Carbon (MBC) 

F test results showed that the interaction of mycorrhizal, soil amendments, and inorganic fertilizer 
significantly influenced microbial biomass carbon (P=0,000**). Microbial biomass carbon was the highest in 
mycorrhizal treatment (6 spores/pot) with biochar rice husk without inorganic fertilizer with a 23-fold 
increase in control (Figure 2). Mycorrhizal treatment (6 spores/pot), cow dung, and inorganic fertilizer 
(M2P1A1) increased the level of C-microbial biomass up to 11 times than the control (Figure 2).  

 

 
Figure 2. Effect of mycorrhizal, soil amendments, and inorganic fertilizers on carbon microbial biomass in Psamments 
Remarks: Means in a column followed by the same letters show no significant difference in the DMRT test at a 5% significance level. 
M0= 0 spore/pot, M1= 3 spores/pot, M2=6 spores/pot (M2), P0= without amendment, p1=cow dung 60 t ha-1, P2= rice husk biochar 

(RHB) 25 t ha-1, A0= 0 kg ha-1, A1 = 100 kg ha-1 NPK fertilizer (15:15:15). 

 

Fungal hyphae have a strong interaction with soil microbes (Nichols, 2008; Eddiwal et al., 2018;) along with 
the addition of biochar rice husk and inorganic fertilizer (Fang et al., 2021) as a source of nutrition for 
microbial development so that the decomposition process will be faster. Xu et al. (2014) suggested that 
biochar rice husk application affects soil bacterial community through improving the soil physicochemical 
characteristics. In line with Xu et al. (2016), the utilization of biochar derived from rice husk in soil has been 
found to enhance microbial activity, potentially attributed to the presence of labile carbon compounds inside 
the biochar. This, in turn, leads to an increase in the availability of nitrogen in soils subjected to biochar 
treatments. Some research result showed that the plant roots have the capacity to facilitate the establishment 
of some specific consortium of microorganisms while the rhizosphere were invaded by fungi (mycorrhizal), 
so that will be some association between microorganisms and root surfaces (rhizosphere) and gave some 
beneficial advantages to both plant and microorganisms (Berendsen et al. 2012; Huang et al. 2019; Gregory, 
2022). 

Conversely, the presence of increased microbial activity suggests a potential elevation in the rate at which 
nutrients, such as nitrogen, are cycled. This might potentially lead to a decrease in nitrogen leaching when rice 
husk biochar is applied. Prasasti and Purwani (2013) revealed that the increase in mycorrhizal dose showed 
an increase in mycorrhizal colonization. Thus, the extension of mycorrhizal hyphae causes interactions with 
various rhizobacterium (Sutariati and dan Wahab, 2012) and the population is increasing along with the 
application of biochar rice husk as an organic material containing organic carbon, humic acid, fulvic acid, and 
various other nutrients (N, P, K) which are a source of energy for soil microbes to accelerate decomposition 
and other chemical reaction processes that require microbial assistance.  

Xu et al. (2016) also mentioned that biochar rice husk application may develop biogeochemical interfaces 
(BGIs) through the high porosity and various functional benefits. Hanzel et al. (2013) explained that BGI 
conditions to the soil could enhance the diversity of niche microhabitats in the soil, hence promoting the 
formation of diverse bacterial populations and facilitating various biological activities. Bi et al. (2018) 
explained that arbuscular mycorrhizal inoculation significantly improves the rhizosphere environment for 
microbes (rhizobacterium) to survive and adapt in the environment, so conducive to soil quality improvement 
and impact the growth of plants. Thereby MBC is in line with bacterial diversity that would be higher in biochar 
applications. 
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Effects of mycorrhizal, soil amendments, and inorganic fertilizers on root infection in Psamments  

The analysis of varian results showed that mycorrhizal application with amendments and inorganic fertilizers 
significantly affected the percentage of root infections (p = 0,000**). The highest root infection was found in 
mycorrhizal treatment (6 spores/plants). It’s about a 100% percentage of infection (Figure 3 and 4). 
Amending and adding mycorrhizal doses increase the percentage of root infections. In line with Bi et al. (2018) 
that mycorrhizal treatment gives a higher mycorrhizal colonization rate inside the root cell than non-
inoculated (control) treatment. Ning et al. (2019) also reported that mycorrhizal treatment improves 
colonization rate than non-inoculated treatments. Prayudyaningsih and Sari (2016) research results showed 
that the roots of the host plant which were inoculated with mycorrhizal were infected, while the roots that 
were not inoculated did not indicate infection. The research results of  Chiomento et al. (2022) also revealed 
the best root infectivity in treatments that were given higher mycorrhizal doses, while the lowest infectivity 
at the lower dose treatment roots. The extension of colonized hyphae mycorrhiza causes interactions with 
various rhizobacterium and soil microbes (Nichols, 2008; Eddiwal et al., 2018) which helps mycorrhizal 
signaling process such as mycorrhization helper bacteria (MHB) and phosphate solubilizing bacteria (PSB) so 
that it affects the mycorrhizal activity to colonize the roots (Gundale and DeLuca, 2007).  

 
Figure 3. The lowest root infection  without mycorrhizal treatment (M0P0A0) (a) and the highest root infection on 

mycorrhizal 6 spores/pot  (M2P0A0) (b)  
 

 
Figure 4. Effect of mycorrhizal, soil amendments, and inorganic fertilizers on root infection in Psamments 

Remarks: Means in a column followed by the same letters show no significant difference in the DMRT test at a 5% 
significance level. M0= 0 spore/pot, M1= 3 spores/pot, M2=6 spores/pot (M2), P0= without amendment, p1=cow dung 

60 t ha-1, P2= rice husk biochar (RHB) 25 t ha-1, A0= 0 kg ha-1, A1 = 100 kg ha-1 NPK fertilizer (15:15:15). 
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Correlation between SOC, GRSP, MBC, and Root Infection  

Correlation test results showed that the parameters relate to mycorrhizal treatment, soil amendments and 
inorganic fertilizers. A significant correlation between EE-GRSP and soil organic carbon levels (r =0.467**) 
(Figure 5). A significant positive correlation was observed between EE-GRSP and T-Glomalin (r =0.695**) 
(Figure 6). The microbial biomass carbon parameter has a very strong correlation with the parameters of root 
infection (r = 0.488**) (Figure 7). All of these correlations are calculated by the ordinary least square method. 

 

   

Figure 5. Relation between easily 
extracted glomalin and soil organic 

carbon 

Figure 6. Relation between easily 
extracted glomalin and total 

glomalin 

Figure 7. Relation between microbial 
biomass carbon and root infection 

Balami et al. (2020) was reported that carbon in glomalin has a major contribution to increasing SOC (Matos 
et al. 2022) and has an impact on improving soil for crop production. Singh (2012) also explained that 
mycorrhizal and GRSP correlate with each other due to their role in building up aggregation then affecting SOC 
dynamics around the agroecosystem. MVA through its external roots will produce compounds in the form of 
glomalin glycoprotein and organic acids that can increase SOC levels so that there was a strong positive 
correlation between glomalin and SOC (Wang et al., 2018).  In their study, Wu et al. (2022) report that the 
application of mycorrhizae has been found to enhance litter decomposition in laboratory trials of short 
duration. However, it is suggested that these effects may potentially yield beneficial long-term outcomes for 
soil organic carbon (SOC) accumulation, hence contributing to soil carbon storage.  Its short-term effects knew 
that mycorrhizal vesicular-arbuscular (MVA) enhance the degradation of soil organic matter (SOM) by 
stimulating decomposers, and moreover the microbial metabolites never lost but they turn into highly stable 
compounds known as mineral-associated SOM fractions which will be the longest mean residence time in soil. 
Organic matter sub-soil contains more microbes derived compounds than top-soil and this microbial 
processes sugar seems to be better associated with mineral phases compared to plant-derived organic matter 
(Rumpel and Kögel-Knabner, 2011). Thereby, this mechanism which holds particular importance in the sub-
soil (clay-minerals presence and sesquioxides) enhancement, represents a considerable potential for mineral-
associated organic matter in long-term stabilization (Wu et al., 2022). There was a strong correlation between 
total and easily extracted glomalin due to their arrangement for presence in the rhizosphere (McClellan et al., 
2022). 

The findings of this research align with the statement of Spedding et al. (2004) that the activity and density of 
microbial populations in the soil are determined by changes in the chemical and physical conditions of soil. 
That is because the extension of mycorrhizal hyphae causes interactions with various rhizobacterium 
(Budiastuti et al., 2021) and soil microbes (Sodiq et al., 2021). The same statement by (Kilowasid et al., 2021) 
along with the increase in mycorrhizal dose shows an increase in mycorrhizal colonization. Soil microbes 
biomass carbon was measured to estimate the presence of microbacterial communities around the 
rhizosphere by measuring the microbe's organic carbon molecules (Ashraf et al., 2020). There was a microbe 
that colonized and resided in the root (surrounding rhizosphere) that utilizes its exudates to their metabolism 
and also a role as a beneficial agent to the plant due to these microbes function (fixation of nitrogen, nutrient 
uptake enhancement, suppression of plant from diseases) and they called as plant growth promoting 
rhizobacteria (PGPR) (Kumari et al., 2018).  
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Microbial biomass carbon demonstrated a very significant correlation with root infection, which agrees with 
our findings. Living root inputs are more effective than litter inputs in producing fast and slow-cycling SOC, as 
well as being more efficiently utilized by the soil microbial population, leading to an increase in the pool of 
mineral-associated SOC (Sokol et al., 2019). This is consistent with the theory of a dissolved organic C route 
from live roots to microbial biomass, as well as mineral-associated SOC (Cotrufo et al., 2019). The type of 
mycorrhizal association determines the formation of slow-cycling soil carbon, microbial stabilization which 
increases with soil depth, secretions and microbial necromass could potentially supplied carbon inputs for 
mineral-associated soil organic C formation, while C released by roots at deep can be stabilized and contribute 
to C pool. The presence of roots can enhance the availability of labile carbon to rhizosphere bacteria, resulting 
in higher rates of SOM mineralization, roots can also contribute to the destabilization by exposing previously 
protected carbon to decomposition of microbial (Dijkstra et al., 2021). Roots have a substantial impact on the 
mineralization of soil organic matter, nitrification, and subsequent immobilization driven by microbial. The 
presence of roots speeds up the decomposition of SOM by up to five times (Gregory, 2022). These findings 
point to the importance of mycorrhizal fungi in microbial biomass, soil organic carbon, and root infection to 
improve the Psamments characteristics.    

Conclusion 
Psamments have low fertility, especially in the concentration of soil organic carbon, total nitrogen, cation 
exchange capacity, available phosphor, and available potassium, according to the initial soil analysis and soil 
fertility category. Adding mycorrhizal, soil amendments, and NPK fertilizers could enhance the problem. Based 
on the results obtained, several conclusions were drawn that the adding of mycorrhizal, amendments and 
inorganic fertilizers can increase the MBC (M2P1A1) with an 11-fold increase (1.22 µg/g) than non-
mycorrhizal treatment. Mycorrhizal (6 spores/pot) with cow-dung (M2P1A0) gave the best EE-GRSP (0.29 mg 
g-1), and the highest root infection was found in mycorrhizal treatment (6 spores/pot) with a percentage of 
infection of 100%. A very strong correlation occurs between EE-GRSP and soil organic carbon, EE-GRSP and 
T-Glomalin; and also microbial biomass carbon and root infection. Mycorrhizal associations are vital for 
microbial stability; C produced by roots contributes to C storage. Roots could boost the availability of labile 
carbon to rhizosphere microorganisms, resulting in faster SOM mineralization and SOC stabilization. Soil 
microbial activities, such as the mineralization of soil organic matter, are influenced considerably by roots. 
SOM decomposition speeds up when roots are present. These data imply that mycorrhizal fungi play a key 
role in microbial biomass, soil organic carbon, and root infection. This study showed that combining 
mycorrhizal fungi with soil amendments and inorganic fertilizers can enhance the properties of Psamments. 
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