Eurasian Journal of Soil Science

Volume 13, Issue 1, Jan 2024, Pages 59 - 69
DOI: 10.18393/ejss.1396572
Stable URL: http://ejss.fess.org/10.18393/ejss.1396572
Copyright © 2024 The authors and Federation of Eurasian Soil Science Societies



Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer

X

Article first published online: 27 Nov 2023 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 19 | 223

Herawati,A., ,M., Dewi,W., Syamsiyah,J., Romadhon,M., 2024. Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer. Eurasian J Soil Sci 13(1):59 - 69. DOI : 10.18393/ejss.1396572
Herawati,A.,,M.Dewi,W.Syamsiyah,J.,& Romadhon,M. Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer Eurasian Journal of Soil Science, 13(1):59 - 69. DOI : 10.18393/ejss.1396572
Herawati,A.,,M.Dewi,W.Syamsiyah,J., and ,Romadhon,M."Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer" Eurasian Journal of Soil Science, 13.1 (2024):59 - 69. DOI : 10.18393/ejss.1396572
Herawati,A.,,M.Dewi,W.Syamsiyah,J., and ,Romadhon,M. "Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer" Eurasian Journal of Soil Science,13(Jan 2024):59 - 69 DOI : 10.18393/ejss.1396572
A,Herawati.M,.W,Dewi.J,Syamsiyah.M,Romadhon "Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer" Eurasian J. Soil Sci, vol.13, no.1, pp.59 - 69 (Jan 2024), DOI : 10.18393/ejss.1396572
Herawati,Aktavia ;,Mujiyo ;Dewi,Widyatmani Sih ;Syamsiyah,Jauhari ;Romadhon,Muhammad Rizky Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer. Eurasian Journal of Soil Science, (2024),13.1:59 - 69. DOI : 10.18393/ejss.1396572

How to cite

Herawati, A., , M., Dewi, W., Syamsiyah, J., Romadhon, M., 2024. Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer. Eurasian J. Soil Sci. 13(1): 59 - 69. DOI : 10.18393/ejss.1396572

Author information

Aktavia Herawati , Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
Mujiyo , Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
Widyatmani Sih Dewi , Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
Jauhari Syamsiyah , Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
Muhammad Rizky Romadhon , Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia

Publication information

Article first published online : 27 Nov 2023
Manuscript Accepted : 23 Nov 2023
Manuscript Received: 15 Jul 2023
DOI: 10.18393/ejss.1396572
Stable URL: http://ejss.fesss.org/10.18393/ejss.1396572

Abstract

Psamments is sandy soil with a texture class of fine loamy sand or coarser in all layers, deposited sands such as dunes in beach lands with low soil biological fertility. Adding mycorrhizal, soil amendments, and inorganic fertilizers could improve soil fertility. This research aimed to investigate the effect of mycorrhizal, soil amendments, and inorganic fertilizers on soil organic carbon (SOC), microbial biomass carbon (MBC), glomalin-related soil protein (GRSP), and root infections in Psamments. This research was a pot experimental in screenhouse, arranged in a factorial completely randomized design with three factors: three of mycorrhizal doses, M0 = 0 spore pot-1, M1 = 3 spores pot-1 and M2 = 6 spores pot-1; three types of soil amendments, P0 = non amendment, P1 = cow dung 60 t ha-1, P2 = rice husk biochar (RHB) 25 t ha-1; and two doses of inorganic fertilizer, A0 = 0 kg ha-1, A1 = 100 kg ha-1 NPK (15:15:15) fertilizer, replied three times. The results showed that mycorrhizal combination with RHB and inorganic fertilizer increased MBC up to 23 times than control. The combination of mycorrhizal-cow dung-inorganic fertilizer was the highest of total-GRSP (4.4 times) and mycorrhizal dose 6 spores pot-1 with both amendments and inorganic fertilizer increase root infection up to 90%. It was proven that mycorrhizal with soil amendments and inorganic fertilizers could improve the microbial properties of Psamments.

Keywords

Cow dung, low fertility, rice husk biochar, soil organic, total GRSP.

Corresponding author

References

Alfahmi, F., Boer, R., Hidayat, R., Perdinan, Sopaheluwakan, A., 2019. The impact of concave coastline on rainfall offshore distribution over Indonesian maritime continent. Scientific World Journal Article ID 6839012.

Ashraf, M. N., Hu, C., Wu, L., Duan, Y., Zhang, W., Aziz, T., Cai, A., Abrar, M.M., Xu, M., 2020. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. Journal of Soils and Sediments 20(8): 3103–3113.  

Azadi, H., Ho, P.,  Hasfiati, L. 2011. Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degradation and Development 22(6): 596-604.

Bai, Y., Pan, B., Charles, T.C., Smith, D.L., 2002. Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biology and Biochemistry 34(12): 1953–1957.

Baiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2021. Biochar amended soils and water systems: Investigation of physical and structural properties. Applied Sciences 11(24): 12108.

Balami, S., Vašutová, M., Godbold, D., Kotas, P., Cudlín, P., 2020. Soil fungal communities across land use types. IForest- Biogeosciences and Forestry 13(6): 548-558.

Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17(8): 478-486.

Bi, Y., Zhang, Y., Zou, H., 2018. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science and Technology 5(1): 47–53.

Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., 2016. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science Society of America. Madison, Wisconsin, USA. 1159p.

Budiastuti, M.T.S., Purnomo, D., Supriyono, Pujiasmanto, B., Setyaningrum, D., 2020. Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. SAINS TANAH - Journal of Soil Science and Agroclimatology 17(2): 94-99.

Cheng, X.F., Xie, M.M., Li, Y., Liu, B.Y., Liu, C.Y., Wu, Q.S., Kuča, K., 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology 170: 104308.

Chiomento, J.L.T., Filippi, D., Krasnievicz, G.M., De Paula, J.E.C., Fornari, M., Trentin, T.S., 2022. Arbuscular mycorrhizal fungi potentiate the root system and the quality of goldenberry fruits. Advances in Horticultural Science 36(4), 265–273.

Clausing, S., Polle, A., 2020. Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Frontiers in Forests and Global Change 3(1): 54.

Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience 12(12): 989–994.

Dijkstra, F.A., Zhu, B., Cheng, W., 2021. Root effects on soil organic carbon: a double-edged sword. New Phytologist 230(1): 60–65.

Driver, J.D., Holben, W.E., Rillig, M.C., 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37(1): 101-106.

Ebido, N.E., Edeh, I.G., Unagwu, B.O., Nnadi, A.L., Ozongwu, O.V., Obalum, S.E., Igwe, C.A., 2021. Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth. Sains Tanah-Journal of Soil Science and Agroclimatology 18(2): 177–187.

Eddiwal, E., Saidi, A., Husin, E.F., Rasyidin, A., 2018. Pengaruh inokulasi fungi mikoriza arbuskula (FMA) plus organik terhadap pertumbuhan dan produksi jagung pada Ultisol. Jurnal Solum – Journal of Soil and Land Utilization Management 15(2): 50-59. [in Indonesian]

Fang, H., Liu, K., Li, D., Peng, X., Zhang, W., Zhou, H., 2021. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil. Soil and Tillage Research 213: 105137.

FAO, 2021. Standard operating procedure for soil nitrogen: Kjeldahl method. Rome, Italy. 25p.  Available at [Access date: 15.07.2023]: https://www.fao.org/3/cb3642en/cb3642en.pdf

Fitriatin, B.N., Amanda, A.P., Kamaluddin, N.N., Khumairah, F.H., Sofyan, E.T., Yuniarti, A., Turmuktini, T., 2021. Some soil biological and chemical properties as affected by biofertilizers and organic ameliorants application on paddy rice. Eurasian Journal of Soil Science 10(2): 105–110.

Goebel, M.O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Global Change Biology 17(8): 2640-2656.

Gregory, P.J., 2022. RUSSELL REVIEW Are plant roots only “in” soil or are they “of” it? Roots, soil formation and function. European Journal of Soil Science 73(1): e13219.

Gundale, M.J., DeLuca, T.H., 2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils 43(3): 303–311.

Handika, G., Yudono, P., Rogomulyo, R., 2016. Pengaruh waktu penyiangan terhadap pertumbuhan dan hasil kacang hijau ( Vigna radiata (L .) R . Wilczek ) di lahan pasir pantai Samas Bantul. Vegetalika 5(4): 25–36. [in Indonesian]

Hanzel, J., Myrold, D., Sessitsch, A., Smalla, K., Tebbe, C.C., Totsche, K.U., 2013. Microbial ecology of biogeochemical interfaces – diversity, structure, and function of microhabitats in soil. FEMS Microbiology Ecology 86(1): 1-2.

Hapsoh, Gusmawartati, Amri, A.I., Diansyah, A., 2017. Respons pertumbuhan dan produksi tanaman cabai keriting (Capsicum annuum L.) terhadap aplikasi pupuk kompos dan pupuk anorganik di polibag. Jurnal Hortikultura Indonesia 8(3): 203–208. [in Indonesian]

He, J.D., Chi, G.G., Zou, Y.N., Shu, B., Wu, Q.S., Srivastava, A.K., Kuča, K., 2020. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology 154: 103592.

Herviyanti, Maulana, A., Lita, A.L., Prasetyo, T.B., Monikasari, M., Ryswaldi, R., 2022. Characteristics of inceptisol ameliorated with rice husk biochar to glyphosate adsorption. SAINS TANAH - Journal of Soil Science and Agroclimatology 19(2): 230–240.

Hodge, A., Fitter, A.H., 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS- Proceedings of the National Academy of Sciences of the United States of America 107(31): 13754-13759.

Huang, A. C., Jiang, T., Liu, Y. X., Bai, Y. C., Reed, J., Qu, B., Goossens, A., Nützmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440): eaau6389.

Husein, H. H., Lucke, B., Bäumler, R., Sahwan, W., 2021. A contribution to soil fertility assessment for arid and semi-arid lands. Soil Systems 5(3): 42.

Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., Lomas, M.R., Cotton, T.E.A., Kemp, S.J., James, R.H., Pearce, C.R., Hartley, S.E., Hodson, M.E., Leake, J.R., Banwart, S.A., Beerling, D.J., 2020. Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global Change Biology 26(6): 3658-3676.  

Kilowasid, L. M. H., Sanjaya, M. F., Sabaruddin, L., Hasid, R., Sulaeman, D., Nurmas, A., 2021. The use of soil biostructures created by soil fauna ecosystem engineers fed with different organic materials as inoculum source of arbuscular mycorrhiza fungi on cocoa seedling. SAINS TANAH - Journal of Soil Science and Agroclimatology 18(2): 166–176.

Kumari, P., Meena, M., Upadhyay, R.S., 2018. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology 16: 155–162.

Li, X., Han, S., Luo, X., Chen, W., Huang, Q., 2020. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments 20(2): 963–972.

Liu, H., Wang, X., Liang, C., Ai, Z., Wu, Y., Xu, H., Xue, S., Liu, G., 2020. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau. Geoderma 357: 113921.

Matos, P.S., da Silva, F.C., Pereira, M.G., da Silva, E.M.R., Tarré, R.M., Franco, C.A.L., Zonta, E., 2022. Short-term modifications of mycorrhizal fungi, glomalin and soil attributes in a tropical agroforestry. Acta Oecologica 114: 103815.

McClellan, S. A., Laws, E. A., Elsey-Quirk, T., 2022. Estimates of protein in coastal marsh soils: A case study of the utility of the Bradford assay for quantifying soil protein. Geoderma 410: 115676.

Meftah, O., Guergueb, Z., Braham, M., Sayadi, S., Mekki, A., 2019. Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agricultural Water Management 212: 119-125.

Nichols, K.A., 2008. Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In: Mycorrhizae: Sustainable Agriculture and Forestry. Siddiqui, Z.A., Akhtar, M.S., Futai, K. (Eds.). Springer, Dordrecht. pp 177–194.

Ning, Y., Xiao, Z., Weinmann, M., Li, Z., 2019. Phosphate uptake is correlated with the root length of celery plants following the association between arbuscular mycorrhizal fungi, Pseudomonas sp. and biochar with different phosphate fertilization levels. Agronomy 9(12): 824.

Nurmalasari, A. I., Supriyono, S., Sri Budiastuti, M.T., Sulistyo, T.D., Nyoto, S., 2021. Composting of rice straw for organic fertilizer and manufacturing rice husk charcoal as planting medium in soybean demonstration plot. PRIMA - Journal of Community Empowering and Services 5(2): 102–109.

Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. 2nd Ed. American Society of Agronomy - Soil Science Society of America, Madison, Wisconsin USA. 1159 p.

Pakbaz, M.S., Behzadipour, H., Ghezelbash, G.R., 2018. Evaluation of shear strength parameters of sandy soils upon microbial treatment. Geomicrobiology Journal 35(8): 721-726.

Paterson, E., Sim, A., Davidson, J., Daniell, T.J., 2016. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant and Soil 408(1–2): 243-254.

Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.  

Prasad, A., Kothari, N., 2022. Cow products: boon to human health and food security. Tropical Animal Health and Production 54(1): 12.

Prasasti, O.H., Purwani, K.I., 2013. Pengaruh mikoriza Glomus fasciculatum terhadap pertumbuhan vegetatif tanaman kacang tanah yang terinfeksi patogen Sclerotium rolfsii. Jurnal Sains Dan Seni Pomits 2(2): 74–78. [in Indonesian]

Prayudyaningsih, R., Sari, R., 2016. The application of arbuscular mycorrhizal fungi (AMF) and compost to improve the growth of teak seedlings (Tectona grandis Linn. f.) on limestone post-mining Soil. Jurnal Penelitian Kehutanan Wallacea 5(1): 37–46.

Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84(4): 355-363.  

Rondhi, M., Pratiwi, P.A., Handini, V.T., Sunartomo, A.F., Budiman, S.A., 2018. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 7(4): 148.

Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant and Soil 338(1):143-158.

Safitri, D.R., Sihaloho, E.D., 2020. Lumbung padi Indonesia dan kemiskinan: studi kasus kabupaten kota di Jawa Timur. Ekonomis: Journal of Economics and Business 4(1): 56-61. [in Indonesian]

Saleem, H., Ahmad, M., Rashid, J., Ahmad, M., Al-Wabel, M.I., Amin, M., 2022. Carbon potentials of different biochars derived from municipal solid waste in a saline soil. Pedosphere 32(2): 283–293.

Sharma, N., Shukla, Y.R., Singh, K., Mehta, D.K., 2020. Soil fertility, nutrient uptake and yield of bell pepper as influenced by conjoint application of organic and inorganic fertilizers. Communications in Soil Science and Plant Analysis 51(20): 1626–1640.

Singh, P.K., 2012. Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi : A Review. Agricultural Science Research Journal 2(3): 119-125.

Sitko, N.J., Jayne, T.S., 2014. Structural transformation or elite land capture? The growth of “emergent” farmers in Zambia. Food Policy 48: 194-202.

Sodiq, A.H., Setiawati, M.R., Santosa, D.A., Widayat, D., 2021. Molecular identification of isolates from local microorganisms as potential biofertilizer. SAINS TANAH - Journal of Soil Science and Agroclimatology 18(2): 188–193.

Soil Survey Staff, 2022. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0. Part 1: Current Methods. U.S. Department of Agriculture, Natural Resources Conservation Service, USA.  Available at [Access date: 15.07.2023]: https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR42.pdf

Sokol, N.W., Kuebbing, S.E., Karlsen-Ayala, E., Bradford, M.A., 2019. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist 221(1): 233–246.

Spedding, T.A., Hamel, C., Mehuys, G.R., Madramootoo, C.A., 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36(3): 499-512.

Samuel, S.S., Veeramani, A., 2021. Advantages of arbuscular mycorrhizal fungi (AMF) production for the profitability of agriculture and biofertilizer industry. In: Mycorrhizal Fungi - Utilization in Agriculture and Industry. Radhakrishnan, R. (Ed.). IntechOpen, pp. 31–46.

Sukartono, Kusumo, B.H., Suwardji, Bakti, A.A., Mahrup, Susilowati, L.E., Fahrudin, 2022. Influence of biochar amendments on the soil quality indicators of sandy loam soils under cassava–peanut cropping sequence in the semi-arid tropics of Northern Lombok, Indonesia. SAINS TANAH - Journal of Soil Science and Agroclimatology 19(2): 205–210.

Sun, J., Jia, Q., Li, Y., Zhang, T., Chen, J., Ren, Y., Dong, K., Xu, S., Shi, N.N., Fu, S., 2022. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of maize (Zea mays L.). Journal of Fungi, 8(12): 1275.

Supriyadi, Mustikaningrum, I.A., Herawati, A., Purwanto, P., Sumani, S., 2018. Soil quality assessment in organic and non organic paddy fields in Susukan, Indonesia. Bulgarian Journal of Agricultural Science, 24(5): 777–784.

Sutariati, G.A.K., dan Wahab, A., 2012. Karakter fisiologis dan kemangkusan rizobakteri indigenus Sulawesi Tenggara sebagai pemacu pertumbuhan tanaman cabai. Jurnal Hortikultura 22(1): 57–64. [in Indonesian]

Syamsiyah, J., Herawati, A., Mujiyo, 2018. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil.  IOP Conference Series: Earth and Environmental Science 142:  012045.

Torry, A., Kusumo, S., 2010. Optimization of the management and empowerment of the outer islands in order to maintain the integrity of the Republic of Indonesia. Jurnal Dinamika Hukum 10(3): 327–337. [in Indonesian]

Treseder, K.K., Turner, K.M., 2007. Glomalin in ecosystems. Soil Science Society of America Journal 71(4): 1257-1266.

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19(6): 703–707.

Vezzani, F.M., Anderson, C., Meenken, E., Gillespie, R., Peterson, M., Beare, M.H., 2018. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil and Tillage Research 175: 139-149.

Wang, Q., Li, J., Chen, J., Hong, H., Lu, H., Liu, J., Dong, Y., Yan, C. 2018. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta. Science of the Total Environment 625: 619-626.

Wei, L., Vosátka, M., Cai, B., Ding, J., Lu, C., Xu, J., Yan, W., Li, Y., Liu, C., 2019. The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: A mini-review. Soil Science Society of America Journal 83(3): 511-517.

Wong, E.V.S., Ward, P.R., Murphy, D.V., Leopold, M., Barton, L., 2020. Vacuum drying water-repellent sandy soil: Anoxic conditions retain original soil water repellency under variable soil drying temperature and air pressure. Geoderma 372: 114385.

Wright, S.F., Upadhyaya, A., 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97–107.

Wu, Y., Deng, M., Huang, J., Yang, S., Guo, L., Yang, L., Ahirwal, J., Peng, Z., Liu, W., Liu, L., 2022. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: A meta-analysis. Soil Biology and Biochemistry 166: 108578.

Xu, H.J., Wang, X.H., Li, H., Yao, H.Y., Su, J.Q., Zhu, Y.G., 2014. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science and Technology 48(16): 9391–9399.

Xu, N., Tan, G., Wang, H., Gai, X., 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology 74: 1-8.

Abstract

Psamments is sandy soil with a texture class of fine loamy sand or coarser in all layers, deposited sands such as dunes in beach lands with low soil biological fertility. Adding mycorrhizal, soil amendments, and inorganic fertilizers could improve soil fertility. This research aimed to investigate the effect of mycorrhizal soil amendments, and inorganic fertilizers on soil organic carbon (SOC), microbial biomass carbon (MBC), glomalin-related soil protein (GRSP), and root infections in Psamments. This research was a pot experimental in screenhouse, arranged in a factorial completely randomized design with three factors: three of mycorrhizal doses, M0 = 0 spore pot-1, M1 = 3 spores pot-1 and M2 = 6 spores pot-1; three types of soil amendments, P0 = non amendment, P1 = cow dung 60 t ha-1, P2 = rice husk biochar (RHB) 25 t ha-1; and two doses of inorganic fertilizer, A0 = 0 kg ha-1, A1 = 100 kg ha-1 NPK (15:15:15) fertilizer, replied three times. The results showed that mycorrhizal combination with RHB and inorganic fertilizer increased MBC up to 23 times than control. The combination of mycorrhizal-cow dung-inorganic fertilizer was the highest of total-GRSP (4.4 times) and mycorrhizal dose 6 spores pot-1 with both amendments and inorganic fertilizer increase root infection up to 90%. It was proven that mycorrhizal with soil amendments and inorganic fertilizers could improve the microbial properties of Psamments.

Keywords: Cow dung, low fertility, rice husk biochar, soil organic, total GRSP.

References

Alfahmi, F., Boer, R., Hidayat, R., Perdinan, Sopaheluwakan, A., 2019. The impact of concave coastline on rainfall offshore distribution over Indonesian maritime continent. Scientific World Journal Article ID 6839012.

Ashraf, M. N., Hu, C., Wu, L., Duan, Y., Zhang, W., Aziz, T., Cai, A., Abrar, M.M., Xu, M., 2020. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. Journal of Soils and Sediments 20(8): 3103–3113.  

Azadi, H., Ho, P.,  Hasfiati, L. 2011. Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degradation and Development 22(6): 596-604.

Bai, Y., Pan, B., Charles, T.C., Smith, D.L., 2002. Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biology and Biochemistry 34(12): 1953–1957.

Baiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2021. Biochar amended soils and water systems: Investigation of physical and structural properties. Applied Sciences 11(24): 12108.

Balami, S., Vašutová, M., Godbold, D., Kotas, P., Cudlín, P., 2020. Soil fungal communities across land use types. IForest- Biogeosciences and Forestry 13(6): 548-558.

Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17(8): 478-486.

Bi, Y., Zhang, Y., Zou, H., 2018. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science and Technology 5(1): 47–53.

Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., 2016. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science Society of America. Madison, Wisconsin, USA. 1159p.

Budiastuti, M.T.S., Purnomo, D., Supriyono, Pujiasmanto, B., Setyaningrum, D., 2020. Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. SAINS TANAH - Journal of Soil Science and Agroclimatology 17(2): 94-99.

Cheng, X.F., Xie, M.M., Li, Y., Liu, B.Y., Liu, C.Y., Wu, Q.S., Kuča, K., 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology 170: 104308.

Chiomento, J.L.T., Filippi, D., Krasnievicz, G.M., De Paula, J.E.C., Fornari, M., Trentin, T.S., 2022. Arbuscular mycorrhizal fungi potentiate the root system and the quality of goldenberry fruits. Advances in Horticultural Science 36(4), 265–273.

Clausing, S., Polle, A., 2020. Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Frontiers in Forests and Global Change 3(1): 54.

Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience 12(12): 989–994.

Dijkstra, F.A., Zhu, B., Cheng, W., 2021. Root effects on soil organic carbon: a double-edged sword. New Phytologist 230(1): 60–65.

Driver, J.D., Holben, W.E., Rillig, M.C., 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37(1): 101-106.

Ebido, N.E., Edeh, I.G., Unagwu, B.O., Nnadi, A.L., Ozongwu, O.V., Obalum, S.E., Igwe, C.A., 2021. Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth. Sains Tanah-Journal of Soil Science and Agroclimatology 18(2): 177–187.

Eddiwal, E., Saidi, A., Husin, E.F., Rasyidin, A., 2018. Pengaruh inokulasi fungi mikoriza arbuskula (FMA) plus organik terhadap pertumbuhan dan produksi jagung pada Ultisol. Jurnal Solum – Journal of Soil and Land Utilization Management 15(2): 50-59. [in Indonesian]

Fang, H., Liu, K., Li, D., Peng, X., Zhang, W., Zhou, H., 2021. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil. Soil and Tillage Research 213: 105137.

FAO, 2021. Standard operating procedure for soil nitrogen: Kjeldahl method. Rome, Italy. 25p.  Available at [Access date: 15.07.2023]: https://www.fao.org/3/cb3642en/cb3642en.pdf

Fitriatin, B.N., Amanda, A.P., Kamaluddin, N.N., Khumairah, F.H., Sofyan, E.T., Yuniarti, A., Turmuktini, T., 2021. Some soil biological and chemical properties as affected by biofertilizers and organic ameliorants application on paddy rice. Eurasian Journal of Soil Science 10(2): 105–110.

Goebel, M.O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Global Change Biology 17(8): 2640-2656.

Gregory, P.J., 2022. RUSSELL REVIEW Are plant roots only “in” soil or are they “of” it? Roots, soil formation and function. European Journal of Soil Science 73(1): e13219.

Gundale, M.J., DeLuca, T.H., 2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils 43(3): 303–311.

Handika, G., Yudono, P., Rogomulyo, R., 2016. Pengaruh waktu penyiangan terhadap pertumbuhan dan hasil kacang hijau ( Vigna radiata (L .) R . Wilczek ) di lahan pasir pantai Samas Bantul. Vegetalika 5(4): 25–36. [in Indonesian]

Hanzel, J., Myrold, D., Sessitsch, A., Smalla, K., Tebbe, C.C., Totsche, K.U., 2013. Microbial ecology of biogeochemical interfaces – diversity, structure, and function of microhabitats in soil. FEMS Microbiology Ecology 86(1): 1-2.

Hapsoh, Gusmawartati, Amri, A.I., Diansyah, A., 2017. Respons pertumbuhan dan produksi tanaman cabai keriting (Capsicum annuum L.) terhadap aplikasi pupuk kompos dan pupuk anorganik di polibag. Jurnal Hortikultura Indonesia 8(3): 203–208. [in Indonesian]

He, J.D., Chi, G.G., Zou, Y.N., Shu, B., Wu, Q.S., Srivastava, A.K., Kuča, K., 2020. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology 154: 103592.

Herviyanti, Maulana, A., Lita, A.L., Prasetyo, T.B., Monikasari, M., Ryswaldi, R., 2022. Characteristics of inceptisol ameliorated with rice husk biochar to glyphosate adsorption. SAINS TANAH - Journal of Soil Science and Agroclimatology 19(2): 230–240.

Hodge, A., Fitter, A.H., 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS- Proceedings of the National Academy of Sciences of the United States of America 107(31): 13754-13759.

Huang, A. C., Jiang, T., Liu, Y. X., Bai, Y. C., Reed, J., Qu, B., Goossens, A., Nützmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440): eaau6389.

Husein, H. H., Lucke, B., Bäumler, R., Sahwan, W., 2021. A contribution to soil fertility assessment for arid and semi-arid lands. Soil Systems 5(3): 42.

Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., Lomas, M.R., Cotton, T.E.A., Kemp, S.J., James, R.H., Pearce, C.R., Hartley, S.E., Hodson, M.E., Leake, J.R., Banwart, S.A., Beerling, D.J., 2020. Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global Change Biology 26(6): 3658-3676.  

Kilowasid, L. M. H., Sanjaya, M. F., Sabaruddin, L., Hasid, R., Sulaeman, D., Nurmas, A., 2021. The use of soil biostructures created by soil fauna ecosystem engineers fed with different organic materials as inoculum source of arbuscular mycorrhiza fungi on cocoa seedling. SAINS TANAH - Journal of Soil Science and Agroclimatology 18(2): 166–176.

Kumari, P., Meena, M., Upadhyay, R.S., 2018. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology 16: 155–162.

Li, X., Han, S., Luo, X., Chen, W., Huang, Q., 2020. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments 20(2): 963–972.

Liu, H., Wang, X., Liang, C., Ai, Z., Wu, Y., Xu, H., Xue, S., Liu, G., 2020. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau. Geoderma 357: 113921.

Matos, P.S., da Silva, F.C., Pereira, M.G., da Silva, E.M.R., Tarré, R.M., Franco, C.A.L., Zonta, E., 2022. Short-term modifications of mycorrhizal fungi, glomalin and soil attributes in a tropical agroforestry. Acta Oecologica 114: 103815.

McClellan, S. A., Laws, E. A., Elsey-Quirk, T., 2022. Estimates of protein in coastal marsh soils: A case study of the utility of the Bradford assay for quantifying soil protein. Geoderma 410: 115676.

Meftah, O., Guergueb, Z., Braham, M., Sayadi, S., Mekki, A., 2019. Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agricultural Water Management 212: 119-125.

Nichols, K.A., 2008. Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In: Mycorrhizae: Sustainable Agriculture and Forestry. Siddiqui, Z.A., Akhtar, M.S., Futai, K. (Eds.). Springer, Dordrecht. pp 177–194.

Ning, Y., Xiao, Z., Weinmann, M., Li, Z., 2019. Phosphate uptake is correlated with the root length of celery plants following the association between arbuscular mycorrhizal fungi, Pseudomonas sp. and biochar with different phosphate fertilization levels. Agronomy 9(12): 824.

Nurmalasari, A. I., Supriyono, S., Sri Budiastuti, M.T., Sulistyo, T.D., Nyoto, S., 2021. Composting of rice straw for organic fertilizer and manufacturing rice husk charcoal as planting medium in soybean demonstration plot. PRIMA - Journal of Community Empowering and Services 5(2): 102–109.

Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. 2nd Ed. American Society of Agronomy - Soil Science Society of America, Madison, Wisconsin USA. 1159 p.

Pakbaz, M.S., Behzadipour, H., Ghezelbash, G.R., 2018. Evaluation of shear strength parameters of sandy soils upon microbial treatment. Geomicrobiology Journal 35(8): 721-726.

Paterson, E., Sim, A., Davidson, J., Daniell, T.J., 2016. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant and Soil 408(1–2): 243-254.

Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.  

Prasad, A., Kothari, N., 2022. Cow products: boon to human health and food security. Tropical Animal Health and Production 54(1): 12.

Prasasti, O.H., Purwani, K.I., 2013. Pengaruh mikoriza Glomus fasciculatum terhadap pertumbuhan vegetatif tanaman kacang tanah yang terinfeksi patogen Sclerotium rolfsii. Jurnal Sains Dan Seni Pomits 2(2): 74–78. [in Indonesian]

Prayudyaningsih, R., Sari, R., 2016. The application of arbuscular mycorrhizal fungi (AMF) and compost to improve the growth of teak seedlings (Tectona grandis Linn. f.) on limestone post-mining Soil. Jurnal Penelitian Kehutanan Wallacea 5(1): 37–46.

Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84(4): 355-363.  

Rondhi, M., Pratiwi, P.A., Handini, V.T., Sunartomo, A.F., Budiman, S.A., 2018. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 7(4): 148.

Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant and Soil 338(1):143-158.

Safitri, D.R., Sihaloho, E.D., 2020. Lumbung padi Indonesia dan kemiskinan: studi kasus kabupaten kota di Jawa Timur. Ekonomis: Journal of Economics and Business 4(1): 56-61. [in Indonesian]

Saleem, H., Ahmad, M., Rashid, J., Ahmad, M., Al-Wabel, M.I., Amin, M., 2022. Carbon potentials of different biochars derived from municipal solid waste in a saline soil. Pedosphere 32(2): 283–293.

Sharma, N., Shukla, Y.R., Singh, K., Mehta, D.K., 2020. Soil fertility, nutrient uptake and yield of bell pepper as influenced by conjoint application of organic and inorganic fertilizers. Communications in Soil Science and Plant Analysis 51(20): 1626–1640.

Singh, P.K., 2012. Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi : A Review. Agricultural Science Research Journal 2(3): 119-125.

Sitko, N.J., Jayne, T.S., 2014. Structural transformation or elite land capture? The growth of “emergent” farmers in Zambia. Food Policy 48: 194-202.

Sodiq, A.H., Setiawati, M.R., Santosa, D.A., Widayat, D., 2021. Molecular identification of isolates from local microorganisms as potential biofertilizer. SAINS TANAH - Journal of Soil Science and Agroclimatology 18(2): 188–193.

Soil Survey Staff, 2022. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0. Part 1: Current Methods. U.S. Department of Agriculture, Natural Resources Conservation Service, USA.  Available at [Access date: 15.07.2023]: https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR42.pdf

Sokol, N.W., Kuebbing, S.E., Karlsen-Ayala, E., Bradford, M.A., 2019. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist 221(1): 233–246.

Spedding, T.A., Hamel, C., Mehuys, G.R., Madramootoo, C.A., 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36(3): 499-512.

Samuel, S.S., Veeramani, A., 2021. Advantages of arbuscular mycorrhizal fungi (AMF) production for the profitability of agriculture and biofertilizer industry. In: Mycorrhizal Fungi - Utilization in Agriculture and Industry. Radhakrishnan, R. (Ed.). IntechOpen, pp. 31–46.

Sukartono, Kusumo, B.H., Suwardji, Bakti, A.A., Mahrup, Susilowati, L.E., Fahrudin, 2022. Influence of biochar amendments on the soil quality indicators of sandy loam soils under cassava–peanut cropping sequence in the semi-arid tropics of Northern Lombok, Indonesia. SAINS TANAH - Journal of Soil Science and Agroclimatology 19(2): 205–210.

Sun, J., Jia, Q., Li, Y., Zhang, T., Chen, J., Ren, Y., Dong, K., Xu, S., Shi, N.N., Fu, S., 2022. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of maize (Zea mays L.). Journal of Fungi, 8(12): 1275.

Supriyadi, Mustikaningrum, I.A., Herawati, A., Purwanto, P., Sumani, S., 2018. Soil quality assessment in organic and non organic paddy fields in Susukan, Indonesia. Bulgarian Journal of Agricultural Science, 24(5): 777–784.

Sutariati, G.A.K., dan Wahab, A., 2012. Karakter fisiologis dan kemangkusan rizobakteri indigenus Sulawesi Tenggara sebagai pemacu pertumbuhan tanaman cabai. Jurnal Hortikultura 22(1): 57–64. [in Indonesian]

Syamsiyah, J., Herawati, A., Mujiyo, 2018. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil.  IOP Conference Series: Earth and Environmental Science 142:  012045.

Torry, A., Kusumo, S., 2010. Optimization of the management and empowerment of the outer islands in order to maintain the integrity of the Republic of Indonesia. Jurnal Dinamika Hukum 10(3): 327–337. [in Indonesian]

Treseder, K.K., Turner, K.M., 2007. Glomalin in ecosystems. Soil Science Society of America Journal 71(4): 1257-1266.

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19(6): 703–707.

Vezzani, F.M., Anderson, C., Meenken, E., Gillespie, R., Peterson, M., Beare, M.H., 2018. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil and Tillage Research 175: 139-149.

Wang, Q., Li, J., Chen, J., Hong, H., Lu, H., Liu, J., Dong, Y., Yan, C. 2018. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta. Science of the Total Environment 625: 619-626.

Wei, L., Vosátka, M., Cai, B., Ding, J., Lu, C., Xu, J., Yan, W., Li, Y., Liu, C., 2019. The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: A mini-review. Soil Science Society of America Journal 83(3): 511-517.

Wong, E.V.S., Ward, P.R., Murphy, D.V., Leopold, M., Barton, L., 2020. Vacuum drying water-repellent sandy soil: Anoxic conditions retain original soil water repellency under variable soil drying temperature and air pressure. Geoderma 372: 114385.

Wright, S.F., Upadhyaya, A., 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97–107.

Wu, Y., Deng, M., Huang, J., Yang, S., Guo, L., Yang, L., Ahirwal, J., Peng, Z., Liu, W., Liu, L., 2022. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: A meta-analysis. Soil Biology and Biochemistry 166: 108578.

Xu, H.J., Wang, X.H., Li, H., Yao, H.Y., Su, J.Q., Zhu, Y.G., 2014. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science and Technology 48(16): 9391–9399.

Xu, N., Tan, G., Wang, H., Gai, X., 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology 74: 1-8.



Eurasian Journal of Soil Science