Eurasian Journal of Soil Science

Volume 3, Issue 4, Nov 2014, Pages 245 - 253
DOI: 10.18393/ejss.12357
Stable URL: http://ejss.fess.org/10.18393/ejss.12357
Copyright © 2014 The authors and Federation of Eurasian Soil Science Societies



Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR)

X

Article first published online: 01 Nov 2014 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 1759 | 3569

Bourrie,G., 2014. Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR). Eurasian J Soil Sci 3(4):245 - 253. DOI : 10.18393/ejss.12357
,& Bourrie,G. Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR) Eurasian Journal of Soil Science, DOI : 10.18393/ejss.12357
, and ,Bourrie,G. "Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR)" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.12357
, and ,Bourrie,G. "Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR)" Eurasian Journal of Soil Science, DOI : 10.18393/ejss.12357
G,Bourrie "Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR)" Eurasian J. Soil Sci, vol., no., pp., DOI : 10.18393/ejss.12357
Bourrie,Guilhem Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR). Eurasian Journal of Soil Science,. DOI : 10.18393/ejss.12357

How to cite

Bourrie, G., 2014. Swelling clays and salt-affected soils : Demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR). Eurasian J. Soil Sci. 3(4): 245 - 253. DOI : 10.18393/ejss.12357

Author information

Guilhem Bourrie , UMR 1114 INRA-UAPV Emmah, Domaine Saint-Paul, Site Agroparc, Avignon, France

Publication information

Issue published online: 10 Nov 2014
Article first published online : 01 Nov 2014
Manuscript Accepted : 17 Oct 2014
Manuscript Received: 01 Jul 2014
DOI: 10.18393/ejss.12357
Stable URL: http://ejss.fesss.org/10.18393/ejss.12357

Abstract

Sodium adsorption ratio SAR defined as SAR= (Na)/ v(Ca+Mg)/2 where concentrations of cations in solution are expressed in meq /L has long been considered as correlated to exchangeable sodium percentage (ESP) on clay minerals or soil exchange complex, and as the key concept to explain swelling of clay minerals and the difficulties of reclaiming salt-affected soils. Though its basis is empirical, it was alleged to be theoretically justified on the basis of ion exchange, derived from the Gapon convention. However, it has long been challenged on the basis of both field observations and experimental evidence : it fails to account for the fact that calcium and magnesium do not play the same role, while potassium is absent from the formula ; calcium concentration must be “corrected “when calcite is present etc. There exist specific ion effects. Experimental measurements of the decrease of permeability when solutions are diluted led Quirk and Schofield (1955) to define the concept of critical threshold, and to show that potassium and magnesium play an intermediate role between sodium and calcium. This threshold is simply determined by the concentration of calcium, irrespective of the value of SAR or ESP. Indeed, demixing of Ca-Na clay minerals during ion exchange, a phenomenon well known since Glaeser and Mering (1954), implies that there exists an interaction between adjacent sites. This undermines the theoretical basis of SAR : the derivation of SAR from ion exchange equilibria implies to use an equilibrium constant. This parameter is no more constant if demixing occurs. The results obtained are positive : demixing leads to expulsion of sodium from inner exchange surfaces and its replacement by calcium, according to the “three crystals pore”proposed by Quirk (2003b). Sodium can then be more easily leached, as permeability is maintained by clusters of Ca-sites. Calcium concentration in solution appears thus as the simpler parameter to guide saltaffected soils reclamation when swelling clays are present.

Keywords

SAR, sodium, calcium, clay, swelling, ESP, demixing, sodium adsorption ratio

Corresponding author

References

Arienzo, M., Christen, E. W., Jayawardane, N. S., Quayle, W. C., 2012. The relative effects of sodium and potassium on soil hydraulic conductivity and implications for winery wastewater management. Geoderma 173: 303–310.

Boström, M., 2001. Specific ion effects: why DLVO theory fails for biology and colloid systems. Physical Review Letters 87.16, 168103-1–168103-4.

Bourrié, G., Tessier, D., Pédro, G., 1983. Considérations sur les phénomènes d’altération dans les systèmes à eau liée (aw <1). In: Pétrologie des altérations (Eds. D. Nahon and Y. Noack). 3 vols. Mémoire 71, pp. 25–33. Sciences Géologiques, Strasbourg.

Bourrié, G., Trolard, F., Refait, Ph., Feder, F., 2004. A solid solution model for Fe(II)-Fe(III)-Mg(II) green rusts and fougerite and estimation of their Gibbs free energies of formation. Clays and Clay Minerals 52: 382–394.

Deryaguin, B.V., Landau, L.L., 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim. URSS 14: 633-662.

Durand, J. H., 1958. Les sols irrigables. Service d’Étude des Sols, Imprimerie Imbert, Alger. Glaeser, R., 1953. Complexes organo-argileux et rôle des cations échangeables. Thèse de doctorat ès Sciences Physiques. Faculté des Sciences de l’Université de Paris. 69 pp.

Glaeser, R., Mering, J., 1954. Isothermes d’hydratation des montmorillonites bi-ioniques (Na, Ca). Clay Minerals Bulletin 2: 188–193.

Griffin, R.A., Jurinak, J.J., 1973. Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Science 116: 26–30.

Henry, M., 2008. Non-covalent interaction in solid state tectonics. In: Advances in Quantum Chemical Bonding Structures (Ed. M.H. Putz), pp. 153–211. Transworld Research Network, Trivandrum, Kerala, India.

Hiemenz, P.C., Rajagopalan, R., 1997. Principles of Colloid and Surface Chemistry. 3rd ed. Marcel Dekker, New York. 650 pp.

Keren, R., Shainberg, I., 1975. Water vapor isotherms and heat of immersion of Na/Ca montmorillonite systems. I - Homoionic clay. Clays and Clay Minerals 23: 193–200.

Keren, R., Shainberg, I., 1979. Water vapor isotherms and heat of immersion of Na/Ca montmorillonite systems. II - Mixed systems. Clays and Clay Minerals 27: 145–151.

Keren, R., Shainberg, I., 1980. Water vapor isotherms and heat of immersion of Na/Ca montmorillonite systems. III - Thermodynamics. Clays and Clay Minerals 28: 204–210.

Kovda, V.A., Yaron, B., Shalhevet, Y., 1967. Quality of irrigation water. In: International source-book on irrigation and drainage of arid lands in relation to salinity and alkalinity (Eds. V.A. Kovda, C. van den Berg, and R.M. Hagan). Draft edition, pp. 246–281. FAO/Unesco, Rome.

Legendre, A.M., 1826. Traité des fonctions elliptiques et des intégrales Eulériennes : avec des tables pour en faciliter le cacul numérique; Tome 2: Les méthodes pour construire les tables elliptiques, le recueil de ces tables, le traité des intégrales Eulériennes et un appendice. Imprimerie de Huzard-Courcier, Paris. 617 pp.

McNeal, B.L., Oster, J.D., Hatcher, J.T., 1970. Calculation of electrical conductivity from solution composition data as an aid to in-situ estimation of soil salinity. Soil Science 110: 405–414.

Meigs, P., Ed., 1977/1979. Carte de la répartition mondiale des régions arides, Carte à 1/25 000 000, 1 feuille en couleurs, Notice explicative. Notes techniques Man and Biosphere 7. UNESCO, Paris. 55 pp.

Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L., Bhuse, S. R., 2006. Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma 136: 210–228.

Pils, Jutta R. V., Laird, David A., Evangelou, Vasilios P., 2007. Role of cation demixing and quasicrystal formation and breakup on the stability of smectitic colloids. Applied Clay Science 35: 201–211.

Prost, R., 1975. Étude de l’hydratation des argiles: interactions eau-minéral et mécanisme de la rétention de l’eau. II. - Étude d’une smectite (hectorite). Annales agronomiques 26: 463–535.

Quirk, J.P., 2003a. Comments on ”Diffuse double-layer models, long-range forces, and ordering of clay colloids”. Soil Science Society of America Journal 67: 1960–1961.

Quirk, J.P., 2003b. Comments on ”The application of double-layer theory to drainage, drying and wetting, and the Gapon Exchange constant in a soil with mono- and divalent cations”, by N. Collis-George. European Journal of Soil Science 54: 211–213.

Quirk, J.P., 1986. Soil permeability in relation to sodicity and salinity. Philosophical Transactions of the Royal Society London, Series A, Mathematical and Physical Sciences 316. 1537, 297–317.

Quirk, J.P., Marčelja, S., 1997. Application of double-layer theories to the extensive crystalline swelling of Li-montmorillonite. Langmuir 13: 6241–6248.

Quirk, J.P., Schofield, R.K., 1955. The effect of electrolyte concentration on soil permeability. Journal of Soil Science 6: 163–178.

Rengasamy, P., Greene, R.S.B., Ford, G.W., Mehanni, A.H., 1984. Identification of dispersive behaviour and the management of red-brown earths. Australian Journal of Soil Research 22: 413–431.

Rimmer, D., Kirk, G., Bourrié, G., 2013. Commentary on the impact of Quirk & Schofield (1955). European Journal of Soil Science 64: 3–7.

Suarez, D.L., 1981. Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil or drainage waters. Soil Science Society of America Journal 45: 469–475.

Trolard, F., Bourrié, G., 2008. Geochemistry of green rusts and fougerite: a reevaluation of Fe cycle in soils. In: Advances in Agronomy(. Ed. D.L. Sparks). Vol. 99. Elsevier, Amsterdam. Chap. 5, 228–288.

Trolard, F., Bourrié, G., 2012. Fougerite a Natural Layered Double Hydroxide in Gley Soil: Habitus, Structure, and Some Properties. In: Clay Minerals in Nature - Their Characterization, Modification and Application (Eds. Marta Valáškova and Gražyna Simha Martynková), pp. 171–188. InTech.

UNESCO, Ed., 1995. Les zones arides dans les programmes de l’UNESCO. UNESCO, Paris. U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. Handbook 60. U.S. Department of Agriculture, U.S. Government Printing Office, Washington, D.C.

Vervey, E.J., Overbeek, J.T., Nes, K., 1948. Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer. Elsevier, New York. 205 pp.

Zhang, X.C., Norton, L.D., 2002. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. Journal of Hydrology 260: 194–205.

Sodium adsorption ratio SAR defined as SAR= (Na)/ v(Ca+Mg)/2   where concentrations of cations in solution are expressed in meq L



Eurasian Journal of Soil Science