Eurasian Journal of Soil Science

Volume 12, Issue 2, Apr 2023, Pages 159 - 168
DOI: 10.18393/ejss.1219669
Stable URL: http://ejss.fess.org/10.18393/ejss.1219669
Copyright © 2023 The authors and Federation of Eurasian Soil Science Societies



Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi

X

Article first published online: 15 Dec 2022 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 56 | 446

Akande,T., Erinle,K., Bitire,T., 2023. Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi. Eurasian J Soil Sci 12(2):159 - 168. DOI : 10.18393/ejss.1219669
Akande,T.,Erinle,K.,& Bitire,T. Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi Eurasian Journal of Soil Science, 12(2):159 - 168. DOI : 10.18393/ejss.1219669
Akande,T.,Erinle,K., and ,Bitire,T."Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi" Eurasian Journal of Soil Science, 12.2 (2023):159 - 168. DOI : 10.18393/ejss.1219669
Akande,T.,Erinle,K., and ,Bitire,T. "Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi" Eurasian Journal of Soil Science,12(Apr 2023):159 - 168 DOI : 10.18393/ejss.1219669
T,Akande.K,Erinle.T,Bitire "Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi" Eurasian J. Soil Sci, vol.12, no.2, pp.159 - 168 (Apr 2023), DOI : 10.18393/ejss.1219669
Akande,Tolulope Yetunde ;Erinle,Kehinde Olajide ;Bitire,Tope Daniel Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi. Eurasian Journal of Soil Science, (2023),12.2:159 - 168. DOI : 10.18393/ejss.1219669

How to cite

Akande, T., Erinle, K., Bitire, T., 2023. Soil properties and growth of yellow bell pepper (Capsicum annum) as influenced by compost and arbuscular mycorrhizal fungi. Eurasian J. Soil Sci. 12(2): 159 - 168. DOI : 10.18393/ejss.1219669

Author information

Tolulope Yetunde Akande , College of Resources and Environment, Northeast Agricultural University, Harbin Heilongjiang Province, China & Agronomy Department, University of Ibadan, Nigeria
Kehinde Olajide Erinle , Agronomy Department, University of Ibadan, Nigeria & School of Agriculture, Food and Wine, University of Adelaide, Adelaide SA 5005, Australia
Tope Daniel Bitire , Agronomy Department, University of Ibadan, Nigeria & Department of Microbiology, Northwest University, Mafikeng Campus, South Africa

Publication information

Article first published online : 15 Dec 2022
Manuscript Accepted : 06 Dec 2022
Manuscript Received: 07 Dec 2021
DOI: 10.18393/ejss.1219669
Stable URL: http://ejss.fesss.org/10.18393/ejss.1219669

Abstract

Compost is an inexpensive agricultural waste which improves soil health and quality. The experiment was carried out to assess the influence of compost and mycorrhizal inoculation (Glomus mosseae) on soil properties and growth of yellow bell pepper in pots under screen house conditions, in a completely randomized design with three replicates. The treatments included mycorrhizal inoculation only (C0M1), compost at 20 t ha-1 only (C1M0), compost at 30 t ha-1 only (C2M0), compost and mycorrhizal inoculation at 20 t ha-1 (C1M1), compost and mycorrhizal inoculation at 30 t ha-1 (C2M1) and control (no amendment / uninoculated). Compost and mycorrhizal inoculation (C1M1 and C2M1) significantly improved soil N, P and K compared to control. Inoculation with mycorrhizal only (C0M1) increased uptake of N, P, K, Ca and Mg compared to uninoculated. Co-utilization of compost and mycorrhizal inoculation significantly increased root and shoot dry biomass compared to uninoculated. The highest fruit yield was obtained at C2M1 followed by C1M1 in comparison to compost application only. Treatment C2M1 recorded the highest prevalence of percent root colonization. This suggests that compost and Glomus mossea could be considered to have a sustainable potential for better growth and yield performance in the production of yellow bell pepper in an Alfisol.

Keywords

Arbuscular mycorrhizal fungi, compost, nutrient uptake, soil fertility, soil nutrient.

Corresponding author

References

Akande, T.Y., Fagbola, O., Erinle, K.O., Bitire, T.D., Urhie, E.J., 2018. Effect of organic manure and mycorrhizal on the growth and yield of Capsicum annum (Hot Pepper). New York Science Journal 11(5): 1-9.

Akyol, T.Y., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T., Fukunaga, A., Sato, T., Yoshida, S., Tawaraya, K., 2019. Impact of introduction of arbuscular mycorrhizal fungi on the microbial community in agricultural fields. Microbes and Environments 34(1): 23–32.  

Aminifard, M.H., Aroiee, H., Azizi, M., Nemati, H., Jaafar, H.Z.E., 2013. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Central European Agriculture 14(2): 47-56.

AOAC, 2005. Official Methods of Analysis of the AOAC International. Association of Official Analytical Chemists International. 18th Edition. Horwitz, W., Latimer, G.W., (Eds.), AOAC (Association of Official Agricultural Chemists) International, USA.

Astiko, W., Ika, R.S., Syamsuddin, D., Anton, M., 2013. The role of indigenous mycorrhiza in combination with cattle manure in improving maize yield (Zea Mays L) on sandy loam of Northern Lombok, Eastern of Indonesia. Journal of Tropical Soils 18: 53-58.

AyanfeOluwa, O.E., 2019. Availability of nutrients from an accelerated compost for maize (Zea mays) production in two soil types. Communications in Soil Science and Plant Analysis 50(12): 1476-1486.

Aylaj, M., Lhadi, E., Adani, F., 2018. Municipal waste and poultry manure compost affect biomass production, nitrate reductase activity and heavy metals in tomato plants. Compost Science and Utilization 27(1): 11-23.

Biala, J., 2000. The use of composed organic waste in viticulture – A review of the international literature and experience, Sustainable Industries Branch, Canberra act 2601, Environment Australia, Canberra.

Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A., Morinaga, T., 2012. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53(1): 10-16.

Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 1085– 1121.

Carlson, J., Saxena, J., Basta, N., Hundal, L., Busalacchi, D., Dick, R.P., 2015. Application of organic amendments to restore degraded soil: effects on soil microbial properties. Environmental Monitoring and Assessment 187: 109.

Cely, M.V.T., de Oliveira, A.G.,  de Freitas, V.F.,  de Luca, M.B.,  Barazetti, A.R., dos Santos, I.M.O., Gionco, B., Garcia, G.V.,  Prete, C.E.C., Andrade, G., 2016. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology 7: 720.

Chukwuka, K.S, Omotayo, O.E., 2009. Soil fertility restoration potentials of tithonia green manure and water hyacinth compost on a nutrient depleted soil in South Western Nigeria using Zea mays L. as test crop. Research Journal of Soil Biology 1: 20-30.

Copetta, A., Bardi, L., Bertolone, E., Berta, G., 2011. Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 145(1): 106–115.

Cozzolino, V., Di Meo, V., Monda, H., Spaccini, R., Piccolo, A., 2016. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biology and Fertility of Soils 52: 15–29.

Çekic, F.Ö., Ünyayar, S., Ortaş, I., 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany 36(1): 63–72.

Demir, Z., Gülser, C., 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions.  Eurasian Journal of Soil Science 4(3): 185-190.

Fawole, O.B., Alori, E.T., Ojo, O.A., 2016. Evaluation of two composts for the improvement of crop yield using tomato (Lycopersicon esculentum) as test crop.  Journal of Agricultural Sciences, Belgrade 61(1): 37-44.

Fischer, D., Glaser. B., 2012. Synergisms between compost and biochar for sustainable soil amelioration In: Management of Organic Waste. Kumar, S., Bharti, S. (Eds.). pp.167-198. IntechOpen.

Franco, A.D., Carrillo, M.A., Chairez, F.O., Cabrera. O.G., 2013. Plant nutrition and fruit quality of pepper associated with arbuscular mycorrhizal in greenhouse. Revista Mexicana de Ciencias Agrícolas 4(2): 315–321.

Frank, K., Beegle, D., Denning, J., 1998. Phosphorus. In: Recommended Chemical Soil Test Procedures for the North Central Region. Brown, J.R. (Ed.), North Central Regional Research Publication No. 221 (revised) Missouri Agriculture Experimental Station Columbia, MO, USA. pp. 21–26. Available at [Access date: 07.12.2021]: https://extension.missouri.edu/media/wysiwyg/Extensiondata/Pub/pdf/specialb/sb1001.pdf

Gautam, S.S., Pathak, N., 2014. Effect of organic fertilizers on soybean yield in Bundelkhand. TECHNOFAME-A Journal of Multidisciplinary Advance Research 3(2): 84-87.

Gee, G.W., Or, D., 2002. Particle-size analysis. In: Methods of Soil Analysis: Part 4 Physical Methods, 5.4.  Dane, J.H., Topp G.C. (Eds.), SSSA Book Series. Soil Science Society of America, Madison, Wisconsin, USA. pp. 255–293.

Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84(3): 489–500.

González, M., Gomez, E., Comese, R., Quesada, M., Conti, M., 2010. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresource Technology 101(22): 8897-8901.

Gosling, P., Hodge, A., Goodlass, G., Bending, G.D., 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment 113(1-4): 17-35.

Hanif, H., Akhtar, N., Cheema, T.A., Achakzai, A.K.K., 2013. Effect of dung, leaf litter and urea on growth of VA mycorrhizae in Lens culinaris medik. cv. massur 95 grown under field conditions. Biologia (Pakistan) 59(2): 221-226.

Hodge, A., Fitter A.H., 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS - Proceedings of the National Academy of Sciences 107(31): 13754–13759.

Hossain, M.Z., Fragstein, V., Niemsdorff, P., Heß, J., 2017. Effect of different organic wastes on soil properties and plant growth and yield: a review. Scientia Agriculturae Bohemica 48(4):224–237.

Hu, J., Lin, X., Wang, J., Dai, J., Cui, X., Chen, R., Zhang, J., 2009. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry 41(12): 2460–2465.

Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A, Pozo, M.J., 2012. Mycorrhiza-ınduced resistance and priming of plant defenses. Journal of Chemical Ecology 38: 651-664.

Kayode, C.O., Adeoye, G.O., Ezekiel-Adewoyin, D.T., AyanfeOluwa, O.E., Ogunleti, D.O., Adekunle, A.F., 2018. Influence of cocoa pod husk-based compost on nutrient uptake of okra (Abelmoschus esculentus (L.) MOENCH) and soil properties on an Alfisol. Communications in Soil Science and Plant Analysis 48(17): 2113-2122.

Kim, S.J., Eo, J.K., Lee, E.H., Park, H., Eom, A.H., 2017. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 45(1): 20-24.

Kim, K, Yim, W., Trivedi, P., Madhaiyan, M., Boruah, H.P.D., Islam, R., Lee, G., Sa, T., 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil 327: 429-440.

Komolafe, A.F., Kayode, C.O., Ezekiel-Adewoyin, D.T., AyanfeOluwa, O.E., Ogunleti, D.O., Makinde, A.I., 2021. Soil properties and performance of celosia (Celosia Argentea) as affected by compost made with Trichoderma asperellum. Eurasian Journal of Soil Science 10(3): 199-206.

Krüger, M., Krüger, C., Walker, C.,  Stockinger, H., Schüßler, A., 2012. Phylogenetic reference data of systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193(4): 970-984.

Linderman, R.G., 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in Sustainable Agriculture. Bethlenfalvay, G.J., Linderman, R.G. (Eds.)., ASA Special Publication 54, Madison, WI, USA. pp. 45–70.

López, A., Fenoll, J., Hellín, P., Flores. P., 2014. Cultivation approach for comparing the nutritional quality of two pepper cultivars grown under different agricultural regimes. LWT - Food Science and Technology 58(1): 299-305.

Maaitah, S.A., Atif, Y.M., Ghazi, N.A., 2014. Response of potted-grown tomato (Lycopersicon esculentum Mill var. Lorely F1) to AMF inoculation with organic and inorganic fertilizer. American-Eurasian Journal of Agriculture and Environment 14(3): 225-262.

Malik, A.A., Chattoo, M.A., Sheemar, G., Rashid, R., 2011. Growth, yield and fruit quality of sweet pepper hybrid SH-SP-5 (Capsicum annuum L.) as affected by integration of inorganic fertilizers and organic manures (FYM). Journal of Agricultural Technology 7(4): 1037-1048.

Mau, A.E., Utami, S.R., 2014. Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. Journal of Degraded and Mining Lands Management 1(2):69-74.

Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M.M., 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32(2): 429-448.

Naghashzadeh, M., Modaberi, A., Sharafizad, I., Sharafizad, M., 2013. Phosphorus concentration and root colonization as affected by arbuscular mycorrhizal fungi in maize (Zea mays L.) under drought stress conditions. Advances in Environmental Biology 7(14): 4623-4629 

Nazeri, N.K., Lambers, H., Tibbett, M., Ryan, M.H., 2014. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell and Environment 37(4): 911–921.

Nelson, D.W., Sommers, L.E., 1996. Total carbon organic carbon and organic matter. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 961–1010.

Neumann, E., George, E., 2010. Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Arbuscular Mycorrhizas: Physiology and Function. Koltai, H., Kapulnik, Y. (Eds.). Springer, Dordrecht. pp.137-167.

Okalebo, J.R., Gathua, K.W., Woomer, P.L., 2002. Laboratory Methods of Soil and Plant Analysis. A Working Manual. 2nd Ed. TSBF-CIAT, SACRED Africa, KARI, Soil Science Society of East Africa, Nairobi, Kenya. 128p.

Olawuyi, O.J., Jonathan, S.G., Babatunde, F.E., Babalola, B.J., Yaya, O.O.S., Agbolade, J.O., Aina, D.A., Egun, C.J., 2014. Accession × Treatment Interaction, Variability and Correlation Studies of Pepper (Capsicum spp.) under the Influence of Arbuscular Mycorrhiza Fungus (Glomus clarum) and Cow Dung. American Journal of Plant Sciences 4(5): 683-690.

Olsson, O., Olsson, P.A., Hammer, E.C., 2014. Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Mycorrhiza 24: 443–451.

Oni, S.A., 2015. Growth and fruit yield of Pepper (Capsicum frutescens L.) as influenced by Arbuscular mycorrhizal (AM) inoculation and fertilizers under greenhouse and field conditions. Applied Tropical Agriculture 15: 126-133.

Ortas, I., 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125: 35–48.

Ortega-García, J.G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J.A., Suárez-Rodríguez, R., Sepúlveda-Jiménez, G.,2015. Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae 195: 8-16.

Patchaye, M., Sundarkrishnan, B., Tamilselvan, S., Sakthivel. N., 2018. Microbial management of organic waste in agroecosystem. In: Microorganisms for green revolution. Microorganisms for sustainability. Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (Eds.). vol 7, Springer, Singapore. pp.45–73.

Perner, H., Schwarz, D., Bruns, C. Mäder, P.C., George, E., 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17: 469–474.

Prasad, K., Aggarwal, A., Yadav, K., Tanwar, A., 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L.  Journal of Soil Science and Plant Nutrition 12(3): 451–462.

Quilliam, R.S., Hodge, A., Jones, D.L., 2010. Sporulation of arbuscular mycorrhizal fungi in organic-rich patches following host excision. Applied Soil Ecology 46(2): 247–250.

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., Colla. G., 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulture 196: 91-108.

Santos, L.Z.H., Myrna, S.O.M., Wenndy, L.W., Andrea, V.R., Manuel, G.P.J.M., 2011 Effects of compost made with sludge and organic residues on bean (Phaseolus vulgaris L.) crop and arbuscular mycorrhizal fungi density. African Journal of Agricultural Research 6: 1580-1585.

Serpeloni, J.M., Leal Specian, A.F., Ribeiro, D.L., Tuttis, K., Vilegas, W., Martínez- López, W., Dokkedal, A.L., Saldanha, L.L., Cólus, I.M.S., Varanda, E.A., 2015. Antimutagenicity and induction of antioxidant defense by flavonoid rich extract of Myrcia bella Cambess, in normal and tumor gastric cells. Journal of Ethnopharmacology 176: 345-355.

Shahidi, F., Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - A review. Journal of Functional Foods 18(B): 820-897.

Smith, S.E., Read, D.J., 2008. Mycorrhizal symbiosis, 3rd Edition. Academic Press. New York, 800p.

Smith, S.E., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227–250.

Smith, S.E., Anderson, I.C., Smith, A.F., 2015 Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. In: Annual Plant Reviews Volume 48: Phosphorus Metabolism in Plants. Plaxton, W., Lambers, H. (Eds.). John Wiley & Sons, Ltd.  pp. 409-440.

Tanwar, A., Aggarwal, A., Yadav, A., Kadian, N., 2011. Enhanced growth and yield of Capsicum annum L. with two endomycorrhizal fungi and other bioinoculants. Journal of Indian Botany Society 90: 351-359.

Tanwar, A, Aggarwal, A., Karishma, A., Neetu, A., 2012. Effectiveness of endomycorrhizal fungi and Pseudomonas fluorescens under different phosphorus levels on Capsicum annuum L. Kasetsart Journal (Natural Science) 46: 769–782.

Tanwar, A., Aggarwal, A., Kadiyan, N., Gupta, A., 2013a. Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. Journal of Soil Science and Plant Nutrition 13(1): 55–66.

Tanwar, A., Aggarwal, A., Yadav, A., Parkash, V., 2013b. Screening and selection of efficient host and sugarcane bagasse as substrate for mass multiplication of Funneliformis mosseae. Biological Agriculture & Horticulture 29(2): 107–117.

Tanwar, A., Aggarwal. A., 2014. Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. Journal of Plant Interactions 9(1): 82-91.

Tanwar, A., Singh, A., Aggarwal, A., Jangra, E., Pichardo, S.T., 2021. Evaluation of municipal sewage sludge for Arbuscular mycorrhizal fungi inoculum production. Eurasian Journal of Soil Science 10(4): 343-353.

Tel, D.A., Hagarty, M., 1984. Soil and Plant Analysis-Study Guide for Agricultural Laboratory, Directors and Technologist Working in Tropikal Regions. International Institute of Tropical Aagrculture, Ibadan, Nigeria & University of Guelph, Canada Publications. 277p.

Ubah, J., Fagbola, O., Aladele, S.E., 2012. Growth of two cowpea [Vigna unguiculata (L.) Walp.] varieties as influenced by arbuscular mycorrhizal fungi and Tithonia (Tithonia diversifolia Hemsl.) application under screen house conditions. Crop Research 44(3): 338-343.

Verbruggen, E., van der Heijeden, M.G.A., Rillig, M.C., Kiers, T., 2013. Mycorrhizal fungal establishment agricultural soils: factors determining, inoculation success. New Phytologist 197(4): 1104-1109.

Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant and Soil 300: 9-20.

Warnock, D.D., Daniel, L., Mummey, D.D., Mcbride, B., Julie-Major, J., Lehmann, J., Rillig M.C., 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Applied Soil Ecology 46: 450–456.

Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S.,  Jamroz, E., Kocowicz, A.,  2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry 39(6): 1294–1302.

Whiteside, M.D., Digman, M.A., Gratton, E., Treseder, K.K., 2012. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry 55: 7–13.

Widiastuti, H., Sukarno, N., Darusman, L.K., Goenadi, D.H., Smith, S., dan Guhardja, E., 2003. Phosphatase activity and organic acid production in rhizosphere and hyphosphere of mycorrhizal oil palm seedling. Journal of Menara Perkebunan 71: 70-81. [in Indonesian].

Xu, P., Liang, L.Z., Dong, X.Y., Shen, R.F., 2015. Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants.  Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 65(1): 23-29. 

Zong, W., Gu, T., Wang, W., Zang, B., Lin, X., Huang, Q., Shen, W., 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil 326: 511–522.

Abstract

Compost is an inexpensive agricultural waste which improves soil health and quality. The experiment was carried out to assess the influence of compost and mycorrhizal inoculation (Glomus mosseae) on soil properties and growth of yellow bell pepper in pots under screen house conditions, in a completely randomized design with three replicates. The treatments included mycorrhizal inoculation only (C0M1), compost at 20 t ha-1 only (C1M0), compost at 30 t ha-1 only (C2M0), compost and mycorrhizal inoculation at 20 t ha-1 (C1M1), compost and mycorrhizal inoculation at 30 t ha-1 (C2M1) and control (no amendment / uninoculated). Compost and mycorrhizal inoculation (C1M1 and C2M1) significantly improved soil N, P and K compared to control. Inoculation with mycorrhizal only (C0M1) increased uptake of N, P, K, Ca and Mg compared to uninoculated. Co-utilization of compost and mycorrhizal inoculation significantly increased root and shoot dry biomass compared to uninoculated. The highest fruit yield was obtained at C2M1 followed by C1M1 in comparison to compost application only. Treatment C2M1 recorded the highest prevalence of percent root colonization. This suggests that compost and Glomus mossea could be considered to have a sustainable potential for better growth and yield performance in the production of yellow bell pepper in an Alfisol.

Keywords: Arbuscular mycorrhizal fungi, compost, nutrient uptake, soil fertility, soil nutrient.

References

Akande, T.Y., Fagbola, O., Erinle, K.O., Bitire, T.D., Urhie, E.J., 2018. Effect of organic manure and mycorrhizal on the growth and yield of Capsicum annum (Hot Pepper). New York Science Journal 11(5): 1-9.

Akyol, T.Y., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T., Fukunaga, A., Sato, T., Yoshida, S., Tawaraya, K., 2019. Impact of introduction of arbuscular mycorrhizal fungi on the microbial community in agricultural fields. Microbes and Environments 34(1): 23–32.  

Aminifard, M.H., Aroiee, H., Azizi, M., Nemati, H., Jaafar, H.Z.E., 2013. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Central European Agriculture 14(2): 47-56.

AOAC, 2005. Official Methods of Analysis of the AOAC International. Association of Official Analytical Chemists International. 18th Edition. Horwitz, W., Latimer, G.W., (Eds.), AOAC (Association of Official Agricultural Chemists) International, USA.

Astiko, W., Ika, R.S., Syamsuddin, D., Anton, M., 2013. The role of indigenous mycorrhiza in combination with cattle manure in improving maize yield (Zea Mays L) on sandy loam of Northern Lombok, Eastern of Indonesia. Journal of Tropical Soils 18: 53-58.

AyanfeOluwa, O.E., 2019. Availability of nutrients from an accelerated compost for maize (Zea mays) production in two soil types. Communications in Soil Science and Plant Analysis 50(12): 1476-1486.

Aylaj, M., Lhadi, E., Adani, F., 2018. Municipal waste and poultry manure compost affect biomass production, nitrate reductase activity and heavy metals in tomato plants. Compost Science and Utilization 27(1): 11-23.

Biala, J., 2000. The use of composed organic waste in viticulture – A review of the international literature and experience, Sustainable Industries Branch, Canberra act 2601, Environment Australia, Canberra.

Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A., Morinaga, T., 2012. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53(1): 10-16.

Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 1085– 1121.

Carlson, J., Saxena, J., Basta, N., Hundal, L., Busalacchi, D., Dick, R.P., 2015. Application of organic amendments to restore degraded soil: effects on soil microbial properties. Environmental Monitoring and Assessment 187: 109.

Cely, M.V.T., de Oliveira, A.G.,  de Freitas, V.F.,  de Luca, M.B.,  Barazetti, A.R., dos Santos, I.M.O., Gionco, B., Garcia, G.V.,  Prete, C.E.C., Andrade, G., 2016. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology 7: 720.

Chukwuka, K.S, Omotayo, O.E., 2009. Soil fertility restoration potentials of tithonia green manure and water hyacinth compost on a nutrient depleted soil in South Western Nigeria using Zea mays L. as test crop. Research Journal of Soil Biology 1: 20-30.

Copetta, A., Bardi, L., Bertolone, E., Berta, G., 2011. Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 145(1): 106–115.

Cozzolino, V., Di Meo, V., Monda, H., Spaccini, R., Piccolo, A., 2016. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biology and Fertility of Soils 52: 15–29.

Çekic, F.Ö., Ünyayar, S., Ortaş, I., 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany 36(1): 63–72.

Demir, Z., Gülser, C., 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions.  Eurasian Journal of Soil Science 4(3): 185-190.

Fawole, O.B., Alori, E.T., Ojo, O.A., 2016. Evaluation of two composts for the improvement of crop yield using tomato (Lycopersicon esculentum) as test crop.  Journal of Agricultural Sciences, Belgrade 61(1): 37-44.

Fischer, D., Glaser. B., 2012. Synergisms between compost and biochar for sustainable soil amelioration In: Management of Organic Waste. Kumar, S., Bharti, S. (Eds.). pp.167-198. IntechOpen.

Franco, A.D., Carrillo, M.A., Chairez, F.O., Cabrera. O.G., 2013. Plant nutrition and fruit quality of pepper associated with arbuscular mycorrhizal in greenhouse. Revista Mexicana de Ciencias Agrícolas 4(2): 315–321.

Frank, K., Beegle, D., Denning, J., 1998. Phosphorus. In: Recommended Chemical Soil Test Procedures for the North Central Region. Brown, J.R. (Ed.), North Central Regional Research Publication No. 221 (revised) Missouri Agriculture Experimental Station Columbia, MO, USA. pp. 21–26. Available at [Access date: 07.12.2021]: https://extension.missouri.edu/media/wysiwyg/Extensiondata/Pub/pdf/specialb/sb1001.pdf

Gautam, S.S., Pathak, N., 2014. Effect of organic fertilizers on soybean yield in Bundelkhand. TECHNOFAME-A Journal of Multidisciplinary Advance Research 3(2): 84-87.

Gee, G.W., Or, D., 2002. Particle-size analysis. In: Methods of Soil Analysis: Part 4 Physical Methods, 5.4.  Dane, J.H., Topp G.C. (Eds.), SSSA Book Series. Soil Science Society of America, Madison, Wisconsin, USA. pp. 255–293.

Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84(3): 489–500.

González, M., Gomez, E., Comese, R., Quesada, M., Conti, M., 2010. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresource Technology 101(22): 8897-8901.

Gosling, P., Hodge, A., Goodlass, G., Bending, G.D., 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment 113(1-4): 17-35.

Hanif, H., Akhtar, N., Cheema, T.A., Achakzai, A.K.K., 2013. Effect of dung, leaf litter and urea on growth of VA mycorrhizae in Lens culinaris medik. cv. massur 95 grown under field conditions. Biologia (Pakistan) 59(2): 221-226.

Hodge, A., Fitter A.H., 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS - Proceedings of the National Academy of Sciences 107(31): 13754–13759.

Hossain, M.Z., Fragstein, V., Niemsdorff, P., Heß, J., 2017. Effect of different organic wastes on soil properties and plant growth and yield: a review. Scientia Agriculturae Bohemica 48(4):224–237.

Hu, J., Lin, X., Wang, J., Dai, J., Cui, X., Chen, R., Zhang, J., 2009. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry 41(12): 2460–2465.

Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A, Pozo, M.J., 2012. Mycorrhiza-ınduced resistance and priming of plant defenses. Journal of Chemical Ecology 38: 651-664.

Kayode, C.O., Adeoye, G.O., Ezekiel-Adewoyin, D.T., AyanfeOluwa, O.E., Ogunleti, D.O., Adekunle, A.F., 2018. Influence of cocoa pod husk-based compost on nutrient uptake of okra (Abelmoschus esculentus (L.) MOENCH) and soil properties on an Alfisol. Communications in Soil Science and Plant Analysis 48(17): 2113-2122.

Kim, S.J., Eo, J.K., Lee, E.H., Park, H., Eom, A.H., 2017. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 45(1): 20-24.

Kim, K, Yim, W., Trivedi, P., Madhaiyan, M., Boruah, H.P.D., Islam, R., Lee, G., Sa, T., 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil 327: 429-440.

Komolafe, A.F., Kayode, C.O., Ezekiel-Adewoyin, D.T., AyanfeOluwa, O.E., Ogunleti, D.O., Makinde, A.I., 2021. Soil properties and performance of celosia (Celosia Argentea) as affected by compost made with Trichoderma asperellum. Eurasian Journal of Soil Science 10(3): 199-206.

Krüger, M., Krüger, C., Walker, C.,  Stockinger, H., Schüßler, A., 2012. Phylogenetic reference data of systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193(4): 970-984.

Linderman, R.G., 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in Sustainable Agriculture. Bethlenfalvay, G.J., Linderman, R.G. (Eds.)., ASA Special Publication 54, Madison, WI, USA. pp. 45–70.

López, A., Fenoll, J., Hellín, P., Flores. P., 2014. Cultivation approach for comparing the nutritional quality of two pepper cultivars grown under different agricultural regimes. LWT - Food Science and Technology 58(1): 299-305.

Maaitah, S.A., Atif, Y.M., Ghazi, N.A., 2014. Response of potted-grown tomato (Lycopersicon esculentum Mill var. Lorely F1) to AMF inoculation with organic and inorganic fertilizer. American-Eurasian Journal of Agriculture and Environment 14(3): 225-262.

Malik, A.A., Chattoo, M.A., Sheemar, G., Rashid, R., 2011. Growth, yield and fruit quality of sweet pepper hybrid SH-SP-5 (Capsicum annuum L.) as affected by integration of inorganic fertilizers and organic manures (FYM). Journal of Agricultural Technology 7(4): 1037-1048.

Mau, A.E., Utami, S.R., 2014. Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. Journal of Degraded and Mining Lands Management 1(2):69-74.

Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M.M., 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32(2): 429-448.

Naghashzadeh, M., Modaberi, A., Sharafizad, I., Sharafizad, M., 2013. Phosphorus concentration and root colonization as affected by arbuscular mycorrhizal fungi in maize (Zea mays L.) under drought stress conditions. Advances in Environmental Biology 7(14): 4623-4629 

Nazeri, N.K., Lambers, H., Tibbett, M., Ryan, M.H., 2014. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell and Environment 37(4): 911–921.

Nelson, D.W., Sommers, L.E., 1996. Total carbon organic carbon and organic matter. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 961–1010.

Neumann, E., George, E., 2010. Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Arbuscular Mycorrhizas: Physiology and Function. Koltai, H., Kapulnik, Y. (Eds.). Springer, Dordrecht. pp.137-167.

Okalebo, J.R., Gathua, K.W., Woomer, P.L., 2002. Laboratory Methods of Soil and Plant Analysis. A Working Manual. 2nd Ed. TSBF-CIAT, SACRED Africa, KARI, Soil Science Society of East Africa, Nairobi, Kenya. 128p.

Olawuyi, O.J., Jonathan, S.G., Babatunde, F.E., Babalola, B.J., Yaya, O.O.S., Agbolade, J.O., Aina, D.A., Egun, C.J., 2014. Accession × Treatment Interaction, Variability and Correlation Studies of Pepper (Capsicum spp.) under the Influence of Arbuscular Mycorrhiza Fungus (Glomus clarum) and Cow Dung. American Journal of Plant Sciences 4(5): 683-690.

Olsson, O., Olsson, P.A., Hammer, E.C., 2014. Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Mycorrhiza 24: 443–451.

Oni, S.A., 2015. Growth and fruit yield of Pepper (Capsicum frutescens L.) as influenced by Arbuscular mycorrhizal (AM) inoculation and fertilizers under greenhouse and field conditions. Applied Tropical Agriculture 15: 126-133.

Ortas, I., 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125: 35–48.

Ortega-García, J.G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J.A., Suárez-Rodríguez, R., Sepúlveda-Jiménez, G.,2015. Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae 195: 8-16.

Patchaye, M., Sundarkrishnan, B., Tamilselvan, S., Sakthivel. N., 2018. Microbial management of organic waste in agroecosystem. In: Microorganisms for green revolution. Microorganisms for sustainability. Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (Eds.). vol 7, Springer, Singapore. pp.45–73.

Perner, H., Schwarz, D., Bruns, C. Mäder, P.C., George, E., 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17: 469–474.

Prasad, K., Aggarwal, A., Yadav, K., Tanwar, A., 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L.  Journal of Soil Science and Plant Nutrition 12(3): 451–462.

Quilliam, R.S., Hodge, A., Jones, D.L., 2010. Sporulation of arbuscular mycorrhizal fungi in organic-rich patches following host excision. Applied Soil Ecology 46(2): 247–250.

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., Colla. G., 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulture 196: 91-108.

Santos, L.Z.H., Myrna, S.O.M., Wenndy, L.W., Andrea, V.R., Manuel, G.P.J.M., 2011 Effects of compost made with sludge and organic residues on bean (Phaseolus vulgaris L.) crop and arbuscular mycorrhizal fungi density. African Journal of Agricultural Research 6: 1580-1585.

Serpeloni, J.M., Leal Specian, A.F., Ribeiro, D.L., Tuttis, K., Vilegas, W., Martínez- López, W., Dokkedal, A.L., Saldanha, L.L., Cólus, I.M.S., Varanda, E.A., 2015. Antimutagenicity and induction of antioxidant defense by flavonoid rich extract of Myrcia bella Cambess, in normal and tumor gastric cells. Journal of Ethnopharmacology 176: 345-355.

Shahidi, F., Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - A review. Journal of Functional Foods 18(B): 820-897.

Smith, S.E., Read, D.J., 2008. Mycorrhizal symbiosis, 3rd Edition. Academic Press. New York, 800p.

Smith, S.E., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227–250.

Smith, S.E., Anderson, I.C., Smith, A.F., 2015 Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. In: Annual Plant Reviews Volume 48: Phosphorus Metabolism in Plants. Plaxton, W., Lambers, H. (Eds.). John Wiley & Sons, Ltd.  pp. 409-440.

Tanwar, A., Aggarwal, A., Yadav, A., Kadian, N., 2011. Enhanced growth and yield of Capsicum annum L. with two endomycorrhizal fungi and other bioinoculants. Journal of Indian Botany Society 90: 351-359.

Tanwar, A, Aggarwal, A., Karishma, A., Neetu, A., 2012. Effectiveness of endomycorrhizal fungi and Pseudomonas fluorescens under different phosphorus levels on Capsicum annuum L. Kasetsart Journal (Natural Science) 46: 769–782.

Tanwar, A., Aggarwal, A., Kadiyan, N., Gupta, A., 2013a. Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. Journal of Soil Science and Plant Nutrition 13(1): 55–66.

Tanwar, A., Aggarwal, A., Yadav, A., Parkash, V., 2013b. Screening and selection of efficient host and sugarcane bagasse as substrate for mass multiplication of Funneliformis mosseae. Biological Agriculture & Horticulture 29(2): 107–117.

Tanwar, A., Aggarwal. A., 2014. Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. Journal of Plant Interactions 9(1): 82-91.

Tanwar, A., Singh, A., Aggarwal, A., Jangra, E., Pichardo, S.T., 2021. Evaluation of municipal sewage sludge for Arbuscular mycorrhizal fungi inoculum production. Eurasian Journal of Soil Science 10(4): 343-353.

Tel, D.A., Hagarty, M., 1984. Soil and Plant Analysis-Study Guide for Agricultural Laboratory, Directors and Technologist Working in Tropikal Regions. International Institute of Tropical Aagrculture, Ibadan, Nigeria & University of Guelph, Canada Publications. 277p.

Ubah, J., Fagbola, O., Aladele, S.E., 2012. Growth of two cowpea [Vigna unguiculata (L.) Walp.] varieties as influenced by arbuscular mycorrhizal fungi and Tithonia (Tithonia diversifolia Hemsl.) application under screen house conditions. Crop Research 44(3): 338-343.

Verbruggen, E., van der Heijeden, M.G.A., Rillig, M.C., Kiers, T., 2013. Mycorrhizal fungal establishment agricultural soils: factors determining, inoculation success. New Phytologist 197(4): 1104-1109.

Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant and Soil 300: 9-20.

Warnock, D.D., Daniel, L., Mummey, D.D., Mcbride, B., Julie-Major, J., Lehmann, J., Rillig M.C., 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Applied Soil Ecology 46: 450–456.

Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S.,  Jamroz, E., Kocowicz, A.,  2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry 39(6): 1294–1302.

Whiteside, M.D., Digman, M.A., Gratton, E., Treseder, K.K., 2012. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry 55: 7–13.

Widiastuti, H., Sukarno, N., Darusman, L.K., Goenadi, D.H., Smith, S., dan Guhardja, E., 2003. Phosphatase activity and organic acid production in rhizosphere and hyphosphere of mycorrhizal oil palm seedling. Journal of Menara Perkebunan 71: 70-81. [in Indonesian].

Xu, P., Liang, L.Z., Dong, X.Y., Shen, R.F., 2015. Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants.  Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 65(1): 23-29. 

Zong, W., Gu, T., Wang, W., Zang, B., Lin, X., Huang, Q., Shen, W., 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil 326: 511–522.



Eurasian Journal of Soil Science