Eurasian Journal of Soil Science

Volume 12, Issue 1, Jan 2023, Pages 28-36
DOI: 10.18393/ejss.1182338
Stable URL: http://ejss.fess.org/10.18393/ejss.1182338
Copyright © 2023 The authors and Federation of Eurasian Soil Science Societies



Pores distribution influences the soil microorganism's response to changes in temperature and moisture

X

Article first published online: 30 Sep 2022 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 56 | 446

Visconti-Moreno,E., Valenzuela-Balcázar,I., 2023. Pores distribution influences the soil microorganism's response to changes in temperature and moisture. Eurasian J Soil Sci 12(1):28-36. DOI : 10.18393/ejss.1182338
Visconti-Moreno,E.,,& Valenzuela-Balcázar,I. Pores distribution influences the soil microorganism's response to changes in temperature and moisture Eurasian Journal of Soil Science, 12(1):28-36. DOI : 10.18393/ejss.1182338
Visconti-Moreno,E.,, and ,Valenzuela-Balcázar,I."Pores distribution influences the soil microorganism's response to changes in temperature and moisture" Eurasian Journal of Soil Science, 12.1 (2023):28-36. DOI : 10.18393/ejss.1182338
Visconti-Moreno,E.,, and ,Valenzuela-Balcázar,I. "Pores distribution influences the soil microorganism's response to changes in temperature and moisture" Eurasian Journal of Soil Science,12(Jan 2023):28-36 DOI : 10.18393/ejss.1182338
E,Visconti-Moreno.I,Valenzuela-Balcázar "Pores distribution influences the soil microorganism's response to changes in temperature and moisture" Eurasian J. Soil Sci, vol.12, no.1, pp.28-36 (Jan 2023), DOI : 10.18393/ejss.1182338
Visconti-Moreno,Efraín Francisco ;Valenzuela-Balcázar,Ibonne Geaneth Pores distribution influences the soil microorganism's response to changes in temperature and moisture. Eurasian Journal of Soil Science, (2023),12.1:28-36. DOI : 10.18393/ejss.1182338

How to cite

Visconti-Moreno, E., Valenzuela-Balcázar, I., 2023. Pores distribution influences the soil microorganism's response to changes in temperature and moisture. Eurasian J. Soil Sci. 12(1): 28-36. DOI : 10.18393/ejss.1182338

Author information

Efraín Francisco Visconti-Moreno , Universidad Francisco de Paula Santander, Faculty of Agricultural and Environmental Sciences. Research group on Environment and Life – GIAV, Cucuta, Colombia
Ibonne Geaneth Valenzuela-Balcázar , Universidad Francisco de Paula Santander, Faculty of Agricultural and Environmental Sciences. Research group on Environment and Life – GIAV, Cucuta, Colombia

Publication information

Article first published online : 30 Sep 2022
Manuscript Accepted : 22 Sep 2022
Manuscript Received: 28 Jan 2022
DOI: 10.18393/ejss.1182338
Stable URL: http://ejss.fesss.org/10.18393/ejss.1182338

Abstract

Microorganisms are an essential fraction of soil organic matter, which presence and activity depend directly on soil physical conditions. This study aimed to address the effect of soil temperature and moisture under contrasting macroporosity conditions on soil biological properties. Soil physical-chemical characterization implicated the collection of composite samples and undisturbed surface soil samples (0 to 10 cm). Also, samples of undisturbed surface soil were extracted in 40 polyvinyl chloride cylinders of 18 cm diameter and 20 cm height for the arrangement of soil mesocosm as the experimental units of a completely randomized experiment with a 2x2x3 factorial arrangement. The experiment duration was 21 days, and the soil biological properties measured were microbial biomass (MB) and soil respiration (SR). Macroporosity showed a significant effect on MB, which indicates that aeration pore influences the number of microorganisms in the soil; for the SR, the macroporosity had a not significant effect. The temperature at the ranges established in the experiment did not significantly affect MB, whereas a highly significant effect of temperature over SR was observed. A highly significant effect of soil moisture was observed on MB and SR. Macroporosity, moisture, and temperature are determining factors in the presence of soil microorganisms, both directly and through the interaction between them. Herein the microorganisms have a wide range of thermal adaptation, and the effect of soil temperature can boost soil microorganisms. In turn, it was observed that the microorganisms present are significantly sensitive to the moisture deficit in soil.

Keywords

Microbial biomass, soil respiration, biological degradation, physical properties, climate change.

Corresponding author

References

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Anderson, T.H., Domsch, K.H., 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21(4): 471-479.

Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J., Bååth, E., 2009. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology 15: 2950 – 2957.

Barros, N., Gomez-Orellana, I., Feijóo, S., Balsa, R., 1995. The effect of soil moisture on soil microbial activity studied by microcalorimetry. Thermochimica Acta 249: 161–168.

Borowik, A., Wyszkowska, J., 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil and Environment 62: 250-255.

Brevik, E., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J., Six, J., Van Oost, K., 2015. The interdisciplinary nature of soil. Soil 1(1): 117–129.

Bronick, C., Lal, R., 2005. Soil structure and management: a review. Geoderma 124(1-2): 3–22.

Chen, M., Zhu, Y., Su, Y., Chen, B., Fu, B., Marschner, P., 2007. Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology 43(1): 31–38.

Cui, J., Holden, N.M., 2015. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil and Tillage Research 146: 32–38.

Dalal, R., 1998. Soil microbial biomass—what do the numbers really mean? Australian Journal of Experimental Agriculture 38(7): 649 - 665.

Dexter, A., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120(3-4): 201-214. 

Di Ciocco, C., Sandler, R., Falco, L., Coviella, C., 2014. Microbiological activity of a soil under different uses and its relation with physico-chemical variables. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo 41: 73-85. [in Spanish]

Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., Lüscher, P., 2009. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology 45: 312–320.

Harris, R., 1981. Effect of water potential on microbial growth and activity. In: Water Potential Relations in Soil Microbiology, Volume 9, Parr, J.F., Gardner, W.R., Elliott, L.F. (Eds.). Soil Science Society of America Inc. USA. pp.23–95.

IGAC, 2006a. Estudio general de suelos y zonificación de tierras del departamento Norte de Santander. Instituto Geográfico Agustín Codazzi (IGAC). Bogotá. 304 p. [in Spanish]

IGAC, 2006b. Métodos analíticos de laboratorio de suelos. Instituto Geográfico Agustín Codazzi (IGAC). Bogotá. 547 p. [in Spanish]

Iglesias, M., 2008. Estudio del carbono de la biomasa microbiana en suelos alterados. Lazaroa 29: 117–123. [in Spanish]

IPCC, 2007. Intergovernmental Panel on Climate Change (IPCC). Uso de la tierra, cambio de uso de la tierra y silvicultura. Informe especial del grupo de trabajo III del IPCC. Publicado Por el Grupo Intergubernamental de Expertos sobre el Cambio Climático, OMM-PNUMA. 128 p. [in Spanish]

Ishak, L., McHenry, M.T., Brown, P.H., 2016. Soil compaction and its effects on soil microbial communities in Capsicum growing soil. Acta Horticulturae 1123: 123-130.

Jacinthe, P.A., Lal, R., Kimble, J.M., 2002. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research 67: 147–157.

Jenkinson, D., Ladd, J., 1981. Microbial biomass in soil: Measurement and turnover. In: Soil Biochemistry, Volume 5. Paul, E.A., Ladd, J.N. (Eds.). CRC Press. pp. 415- 471.

Jury, W., Horton, R., 2004. Soil Physics. Sixth edition. John Wiley & Sons Inc., USA. 359 p.

Kaurin, A., Mihelič, R., Kastelec, D., Grčman, H., Bru, D., Philippot, L., Suhadolc, M., 2018. Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and conservation tillage, to agricultural drought. Soil Biology and Biochemistry 120: 233–245.

Lipson, D.A., Monson, R.K., Schmidt, S.K., Weintraub, M.N., 2009. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95: 23-35.

Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., Jin, Y., Zou, J., 2018. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8: 392-406.

Liu, Y., He, N., Wen, X., Xu, L., Sun, X., Yu, G., Liang, L., Schipperd, L.A., 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry 121: 35–42.

Lozano, Z., Hernández, R., Ojeda, A., 2005. Manual de métodos para la evaluación de la calidad física, química y biológica de los suelos. Facultad de Agronomía, Universidad Central de Venezuela. 45 p.

Lubbers, I.M., Pulleman, M.M., Van Groenigen, J.W., 2017. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology and Biochemistry 105: 12 – 24.

Macías, F., Camps-Arbestain, M., 2010. Soil carbon sequestration in a changing environment. Mitigation and Adaptation Strategies for Global Change 15: 511-529.

Malcolm, G.M., López-Gutiérrez, J.C., Koide, R.T., Eissenstat, D.M., 2008. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Global Change Biology 14(5): 1-12.

Moráis-Lima do Nascimento, P.G., da Cruz, B.L.S., Dantas, A.M.M., Freitas, F.C.L., Ambrósio, M.M.Q., Júnior, R.S., 2016. Microbial communities in soil cultivated with muskmelon under different management systems. Revista Brasilera do Ciencia do Solo 40: e0160130.

Morugán-Coronado, A., García-Orenes, F., McMillan, M., Pereg, L., 2019. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. Science of the Total Environment 655: 158–167.

Mujtar, V., Muñoz, N., Prack Mc Cormick, B., Pulleman, M., Tittonell, P., 2019. Role and management of soil biodiversity for food security and nutrition; where do we stand? Global Food Security 20: 132–144.

Pla, S.I., 1983. Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Revista de la Facultad de Agronomía. Alcance 32. 91p. [in Spanish]

Pla, S.I., 2010. Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. I – Propiedades mecánicas. Suelos Ecuatoriales 40: 75-93. [in Spanish]

Prado, A.G.S., Airoldi, C., 1999. The influence of moisture on microbial activity of soils. Thermochima Acta 332: 71-74.

Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., Rutgers, M., 2012. Soil biodiversity, biological indicators and soil ecosystem services an overview of European approaches. Current Opinion in Environmental Sustainability 4(5): 529–538.

Rinnan, R., Michelsen, A., Jonasson, S., 2008. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Applied Soil Ecology 39: 271-281.

Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry 43: 1417–1425.

Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T. 2020. Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy 10(9): 1429.

Soil Survey Staff 2010. Keys to Soil Taxonomy, 11th Edition. United States Department of Agriculture (USDA), Natural Resources Conservation Service,  Washington, DC. 939p. Available at [Access date: 28.01.2022]:  https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcs142p2_053110&ext=pdf

USDA, 1999. Guía para la evaluación de la calidad y salud del suelo. Departamento de Agricultura, Servicio de Investigación Agricola, Servicio de Conservación de Recursos Naturales, 249 p. Available at [Access date: 28.01.2022]:  https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051284.pdf [in Spanish]

Valadares-Pereira, A.A., Oliveira, E.C.A.M., Navarrete, A.A., Junior, W.P.O., Tsai, S.M., Peluzio, J.M., Morais, P.B., 2017. Fungal community structure as an indicator of soil agricultural management effects in the Cerrado. Revista Brasileira do Ciencia do Solo 41: e0160489.

Vimal, S.R., Singh, S.J., Arora, N.K., Singh, S., 2017. Soil-plant-microbe ınteractions in stressed agriculture management: A review. Pedosphere 27(2): 177–192.

Voroney, R.P., Heck, R.J., 2015. The Soil Habitat. In: Soil Microbiology, Ecology and Biochemistry. 4th Edition. Paul, E.A. (Ed.). Elsevier, p. 15– 39.

Wang, G., Huang, W., Mayes, M., Liu, X., Zhang, D., Zhang, Q., Han, T., Zhou, G., 2019. Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biology and Biochemistry 130: 185 – 194.  

Zagal, E., Rodríguez, N., Vidal, I., Quezada, L., 2002. Microbial activity in a volcanic ash soil under different agricultural management. Agricultura Técnica 62: 297-309.  [in Spanish]

Abstract

Microorganisms are an essential fraction of soil organic matter, which presence and activity depend directly on soil physical conditions. This study aimed to address the effect of soil temperature and moisture under contrasting macroporosity conditions on soil biological properties. Soil physical-chemical characterization implicated the collection of composite samples and undisturbed surface soil samples (0 to 10 cm). Also, samples of undisturbed surface soil were extracted in 40 polyvinyl chloride cylinders of 18 cm diameter and 20 cm height for the arrangement of soil mesocosm as the experimental units of a completely randomized experiment with a 2x2x3 factorial arrangement. The experiment duration was 21 days, and the soil biological properties measured were microbial biomass (MB) and soil respiration (SR). Macroporosity showed a significant effect on MB, which indicates that aeration pore influences the number of microorganisms in the soil; for the SR, the macroporosity had a not significant effect. The temperature at the ranges established in the experiment did not significantly affect MB, whereas a highly significant effect of temperature over SR was observed. A highly significant effect of soil moisture was observed on MB and SR. Macroporosity, moisture, and temperature are determining factors in the presence of soil microorganisms, both directly and through the interaction between them. Herein the microorganisms have a wide range of thermal adaptation, and the effect of soil temperature can boost soil microorganisms. In turn, it was observed that the microorganisms present are significantly sensitive to the moisture deficit in soil.

Keywords: Microbial biomass, soil respiration, biological degradation, physical properties, climate change.

References

Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.

Anderson, T.H., Domsch, K.H., 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21(4): 471-479.

Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J., Bååth, E., 2009. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology 15: 2950 – 2957.

Barros, N., Gomez-Orellana, I., Feijóo, S., Balsa, R., 1995. The effect of soil moisture on soil microbial activity studied by microcalorimetry. Thermochimica Acta 249: 161–168.

Borowik, A., Wyszkowska, J., 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil and Environment 62: 250-255.

Brevik, E., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J., Six, J., Van Oost, K., 2015. The interdisciplinary nature of soil. Soil 1(1): 117–129.

Bronick, C., Lal, R., 2005. Soil structure and management: a review. Geoderma 124(1-2): 3–22.

Chen, M., Zhu, Y., Su, Y., Chen, B., Fu, B., Marschner, P., 2007. Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology 43(1): 31–38.

Cui, J., Holden, N.M., 2015. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil and Tillage Research 146: 32–38.

Dalal, R., 1998. Soil microbial biomass—what do the numbers really mean? Australian Journal of Experimental Agriculture 38(7): 649 - 665.

Dexter, A., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120(3-4): 201-214. 

Di Ciocco, C., Sandler, R., Falco, L., Coviella, C., 2014. Microbiological activity of a soil under different uses and its relation with physico-chemical variables. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo 41: 73-85. [in Spanish]

Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., Lüscher, P., 2009. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology 45: 312–320.

Harris, R., 1981. Effect of water potential on microbial growth and activity. In: Water Potential Relations in Soil Microbiology, Volume 9, Parr, J.F., Gardner, W.R., Elliott, L.F. (Eds.). Soil Science Society of America Inc. USA. pp.23–95.

IGAC, 2006a. Estudio general de suelos y zonificación de tierras del departamento Norte de Santander. Instituto Geográfico Agustín Codazzi (IGAC). Bogotá. 304 p. [in Spanish]

IGAC, 2006b. Métodos analíticos de laboratorio de suelos. Instituto Geográfico Agustín Codazzi (IGAC). Bogotá. 547 p. [in Spanish]

Iglesias, M., 2008. Estudio del carbono de la biomasa microbiana en suelos alterados. Lazaroa 29: 117–123. [in Spanish]

IPCC, 2007. Intergovernmental Panel on Climate Change (IPCC). Uso de la tierra, cambio de uso de la tierra y silvicultura. Informe especial del grupo de trabajo III del IPCC. Publicado Por el Grupo Intergubernamental de Expertos sobre el Cambio Climático, OMM-PNUMA. 128 p. [in Spanish]

Ishak, L., McHenry, M.T., Brown, P.H., 2016. Soil compaction and its effects on soil microbial communities in Capsicum growing soil. Acta Horticulturae 1123: 123-130.

Jacinthe, P.A., Lal, R., Kimble, J.M., 2002. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research 67: 147–157.

Jenkinson, D., Ladd, J., 1981. Microbial biomass in soil: Measurement and turnover. In: Soil Biochemistry, Volume 5. Paul, E.A., Ladd, J.N. (Eds.). CRC Press. pp. 415- 471.

Jury, W., Horton, R., 2004. Soil Physics. Sixth edition. John Wiley & Sons Inc., USA. 359 p.

Kaurin, A., Mihelič, R., Kastelec, D., Grčman, H., Bru, D., Philippot, L., Suhadolc, M., 2018. Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and conservation tillage, to agricultural drought. Soil Biology and Biochemistry 120: 233–245.

Lipson, D.A., Monson, R.K., Schmidt, S.K., Weintraub, M.N., 2009. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95: 23-35.

Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., Jin, Y., Zou, J., 2018. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8: 392-406.

Liu, Y., He, N., Wen, X., Xu, L., Sun, X., Yu, G., Liang, L., Schipperd, L.A., 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry 121: 35–42.

Lozano, Z., Hernández, R., Ojeda, A., 2005. Manual de métodos para la evaluación de la calidad física, química y biológica de los suelos. Facultad de Agronomía, Universidad Central de Venezuela. 45 p.

Lubbers, I.M., Pulleman, M.M., Van Groenigen, J.W., 2017. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology and Biochemistry 105: 12 – 24.

Macías, F., Camps-Arbestain, M., 2010. Soil carbon sequestration in a changing environment. Mitigation and Adaptation Strategies for Global Change 15: 511-529.

Malcolm, G.M., López-Gutiérrez, J.C., Koide, R.T., Eissenstat, D.M., 2008. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Global Change Biology 14(5): 1-12.

Moráis-Lima do Nascimento, P.G., da Cruz, B.L.S., Dantas, A.M.M., Freitas, F.C.L., Ambrósio, M.M.Q., Júnior, R.S., 2016. Microbial communities in soil cultivated with muskmelon under different management systems. Revista Brasilera do Ciencia do Solo 40: e0160130.

Morugán-Coronado, A., García-Orenes, F., McMillan, M., Pereg, L., 2019. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. Science of the Total Environment 655: 158–167.

Mujtar, V., Muñoz, N., Prack Mc Cormick, B., Pulleman, M., Tittonell, P., 2019. Role and management of soil biodiversity for food security and nutrition; where do we stand? Global Food Security 20: 132–144.

Pla, S.I., 1983. Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Revista de la Facultad de Agronomía. Alcance 32. 91p. [in Spanish]

Pla, S.I., 2010. Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. I – Propiedades mecánicas. Suelos Ecuatoriales 40: 75-93. [in Spanish]

Prado, A.G.S., Airoldi, C., 1999. The influence of moisture on microbial activity of soils. Thermochima Acta 332: 71-74.

Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., Rutgers, M., 2012. Soil biodiversity, biological indicators and soil ecosystem services an overview of European approaches. Current Opinion in Environmental Sustainability 4(5): 529–538.

Rinnan, R., Michelsen, A., Jonasson, S., 2008. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Applied Soil Ecology 39: 271-281.

Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry 43: 1417–1425.

Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T. 2020. Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy 10(9): 1429.

Soil Survey Staff 2010. Keys to Soil Taxonomy, 11th Edition. United States Department of Agriculture (USDA), Natural Resources Conservation Service,  Washington, DC. 939p. Available at [Access date: 28.01.2022]:  https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcs142p2_053110&ext=pdf

USDA, 1999. Guía para la evaluación de la calidad y salud del suelo. Departamento de Agricultura, Servicio de Investigación Agricola, Servicio de Conservación de Recursos Naturales, 249 p. Available at [Access date: 28.01.2022]:  https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051284.pdf [in Spanish]

Valadares-Pereira, A.A., Oliveira, E.C.A.M., Navarrete, A.A., Junior, W.P.O., Tsai, S.M., Peluzio, J.M., Morais, P.B., 2017. Fungal community structure as an indicator of soil agricultural management effects in the Cerrado. Revista Brasileira do Ciencia do Solo 41: e0160489.

Vimal, S.R., Singh, S.J., Arora, N.K., Singh, S., 2017. Soil-plant-microbe ınteractions in stressed agriculture management: A review. Pedosphere 27(2): 177–192.

Voroney, R.P., Heck, R.J., 2015. The Soil Habitat. In: Soil Microbiology, Ecology and Biochemistry. 4th Edition. Paul, E.A. (Ed.). Elsevier, p. 15– 39.

Wang, G., Huang, W., Mayes, M., Liu, X., Zhang, D., Zhang, Q., Han, T., Zhou, G., 2019. Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biology and Biochemistry 130: 185 – 194.  

Zagal, E., Rodríguez, N., Vidal, I., Quezada, L., 2002. Microbial activity in a volcanic ash soil under different agricultural management. Agricultura Técnica 62: 297-309.  [in Spanish]



Eurasian Journal of Soil Science