Eurasian Journal of Soil Science

Volume 11, Issue 4, Oct 2022, Pages 329-336
DOI: 10.18393/ejss.1135515
Stable URL: http://ejss.fess.org/10.18393/ejss.1135515
Copyright © 2022 The authors and Federation of Eurasian Soil Science Societies



Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico

X

Article first published online: 24 Jun 2022 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 65 | 400

Hernández ,I., Solís,H., Aguilar,F., ,., Jimenez,C., Natera ,J., 2022. Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico. Eurasian J Soil Sci 11(4):329-336. DOI : 10.18393/ejss.1135515
Hernández ,I.Solís,H.Aguilar,F.,.Jimenez,C.,,& Natera ,J. Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico Eurasian Journal of Soil Science, 11(4):329-336. DOI : 10.18393/ejss.1135515
Hernández ,I.Solís,H.Aguilar,F.,.Jimenez,C.,, and ,Natera ,J."Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico" Eurasian Journal of Soil Science, 11.4 (2022):329-336. DOI : 10.18393/ejss.1135515
Hernández ,I.Solís,H.Aguilar,F.,.Jimenez,C.,, and ,Natera ,J. "Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico" Eurasian Journal of Soil Science,11(Oct 2022):329-336 DOI : 10.18393/ejss.1135515
I,Hernández .H,Solís.F,Aguilar.,.C,Jimenez.J,Natera "Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico" Eurasian J. Soil Sci, vol.11, no.4, pp.329-336 (Oct 2022), DOI : 10.18393/ejss.1135515
Hernández ,Isidro Zapata ;Solís,Héctor Vázquez ;Aguilar,Franklin B. Martinez ;, ;Jimenez,Carlos Ernesto Aguilar ;Natera ,Juan Francisco Zamora Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico. Eurasian Journal of Soil Science, (2022),11.4:329-336. DOI : 10.18393/ejss.1135515

How to cite

Hernández , I., Solís, H., Aguilar, F., , ., Jimenez, C., Natera , J., 2022. Biomass yield, soil cover and minerals accumulation by two green manures species grown in soils of Chiapas Mexico. Eurasian J. Soil Sci. 11(4): 329-336. DOI : 10.18393/ejss.1135515

Author information

Isidro Zapata Hernández , Faculty of Agronomic Sciences C-V, Autonomous University of Chiapas, 30470, Villaflores, Chiapas, Mexico
Héctor Vázquez Solís , Faculty of Agronomic Sciences C-V, Autonomous University of Chiapas, 30470, Villaflores, Chiapas, Mexico
Franklin B. Martinez Aguilar , Faculty of Agronomic Sciences C-V, Autonomous University of Chiapas, 30470, Villaflores, Chiapas, Mexico
,
Carlos Ernesto Aguilar Jimenez , Faculty of Agronomic Sciences C-V, Autonomous University of Chiapas, 30470, Villaflores, Chiapas, Mexico
Juan Francisco Zamora Natera , Department of Botany and Zoology, University of Guadalajara, 45100, Nextipac, Zapopan, Jalisco, Mexico

Publication information

Article first published online : 24 Jun 2022
Manuscript Accepted : 17 Jun 2022
Manuscript Received: 16 Nov 2021
DOI: 10.18393/ejss.1135515
Stable URL: http://ejss.fesss.org/10.18393/ejss.1135515

Abstract

The aim of the current study was to assess the performance of Canavalia ensiformis and Mucuna deeringiana (Leguminosae) as a green manure in the agricultural soil of the Frailesca region of Chiapas, México, in terms of aboveground biomass accumulation, plant height, number of leaves, canopy coverage, and the accumulation of nitrogen (N), phosphorus (P), and potassium (K). Each species was sowed at two population densities under a randomized complete block design with three replications. Every 30 days after sowing (DAS), the following variables were quantified: plant length, number of leaves, canopy coverage, biomass yield, and N, P, and K content. A variance analysis and mean comparison test (Tukey 0.05) were performed for each variable. The biomass yield in M. deeringiana fluctuated from 9150 to 33,160 kg ha-1 on a fresh basis and from 4490 to 15,890 kg ha-1 on a dry basis, whereas the yield in C. ensiformis varied from 9343 to 26,390 kg ha-1 and from 4513 to 13,150 kg ha-1, respectively. The longest recorded plant length was 513.00 cm in M. deeringiana and 155 cm in C. ensiformis, with a total of 353 and 322 leaves, respectively. The accumulation of N, P, and K was 463.99 kg ha-1, 84.22 kg ha-1, and 49.26 kg ha-1 in M. deeringiana and 341.90 kg ha-1, 43.40 kg ha-1, and 36.82 kg ha-1 in C. ensiformis, respectively. Both C. ensiformis and M. deeringiana have potential as green manure for the Frailesca region of Chiapas in terms of biomass production and N accumulation.

Keywords

Canavalia ensiformis, Canopy coverage, dry matter, ecotechnologies, legumes, Mucuna deeringiana.

Corresponding author

References

Aguilar, J.C.E., 2014. La agricultura sostenible en el Valle del Tulijá, Chiapas, México. Universidad Autónoma de Chiapas, México. 183p.

Aguilar, J.C.E., Gadámez, J.G., Aguilar, F.B.M., Hernández, F.G., Solis, H.V., 2019. Efficiency of the corn-bean-squash polyculture under organic management in la Frailesca, Chiapas, Mexico. Revista Científica Agroecosistemas 7(3): 64-72.

Amézquita, A.E., Rao, I.M., Rivera, M., Corrales, I.I., Bernal, J.H., 2013. Sistemas agropastoriles: un enfoque integrado para el manejo sostenible de oxisoles de los Llanos Orientales de Colombia. Centro Internacional de Agricultura Tropical (CIAT), Ministerio de Agricultura y Desarrollo Rural (MADR)-Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Cali, CO. 288p.

Barrientos-Llanos, H., del Castillo-Gutiérrez, C.R., García-Cárdenas, M., 2015. Functional analysis of growth, biomass accumulation and translocation of dry matter eight vegetables grown in greenhouses. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales 2(1): 76-86.

Bianco, L., 2020. Principales aspectos de la nodulación y fijación biológica de nitrógeno en Fabáceas. Idesia (Arica) 38(2): 21-29.

Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis. Part 3, Chemical Methods, Sparks, D.L., Page, A.L, Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Ed.). American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, USA. pp. 1085-1022.

Buckles, D., Triomphe, B., 1999. Adoption of mucuna in the farming system of northern Honduras. Agroforestry Systems 47: 67-91.

Bunch, R., 2016. ¿Cómo prohibir las sequías? Aprendiendo de los africanos que ya aprendieron de los latinoamericanos. LEISA Revista de Agroecología 32(2): 8-11.

Calegari, A., Alcântara, P.B., Muyasaka, S., Amado, T.J.C., 1993. Caracterização das principais espécies de abonos verdes, En: Adubação verde no sul do Brasil. 2a ed. Asses e Serv a Proj em Agricultura Alternat (AS-PTA), Costa, M.B., (Ed.). Rio de Janeiro, Brasil, pp. 206-319.

Carter, M.R., Gregorich, E.G., 2007. Soil sampling and methods of analysis. CRC press.

Chapman, H.D., Parker, F.P., Cotin, T.A., 1984. Metodos de Anallsls para Suelos, Plantas y Agua, Trillas, Mexico. 195p.

Córdova-Sánchez, S., Castelán-Estrada, M., Salgado-García, S., Palma-López, J.D., Vera-Núñez, J.A., Peña-Cabriales, J.J., Lagunes-Espinoza, L.C., Cárdena-Navarro, R., 2011. Biological nitrogen fixation by three fabaceas (Leguminosae) in acid soil of Tabasco, Mexico. Avances en Investigación Agropecuaria 15(1): 31-50.

Costa-Mello, S.D., Nimi-Kassoma, J., Quesada-Roldán, G., Silva, A.D.D., Donegá, M.A., Santos-Dias, C.T.D., 2018. Green manure in parsley production and soil fertility in Piracicaba, Brazil. Revista Colombiana de Ciencias Hortícolas 12(1): 183-191.

Cruz, L.J., da Silva, S.L., dos Santos, S N.C., Pelacani, C.R., 2014. Effect of cover crops on the aggregation of a soil cultivated with papaya (Carica papaya L.). Scientia Horticulturae 172(9): 82-85.

Divito, G., Sadras, V., 2014. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Research 156: 161-171.

Eilittä, M., Carsky, R.J., 2003. Efforts to improve the potential of Mucuna as a food and feed crop: background to the workshop. Tropical and Subtropical Agroecosystems 1(2): 47-55.

Fishman, M.J., Downs, S.C., 1966, Method for analysis of selected metals in water by atomic absorption: U.S. Geological Survey Water-Supply Paper 1540-C, 36-8 p.

Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., Seneweera, S., 2018. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell & Environment 41(6): 1233-1246.

García-Hernández, J.L., Murillo-Amador, B., Nieto-Garibay, A., Fortis-Hernández, M., Márquez-Hernández, C., Castellanos-Pérez, E., Quiñones-Vera, J.J., Ávila-Serrano, N.Y., 2010. Research Advances and Prospects on the Use of Green Manures in Agriculture. Terra Latinoamericana 28(4): 391-399.

Gerónimo, C.A., Salgado, G.S., Catzin, R.F.J., Ortiz, C.A.I., 2002. Descomposición del follaje de nescafé (Mucuna spp.) en la época de seca. Interciencia 27(11): 625-630.

Mangaravite, J.C., Passos, R., Andrade, F., Burak, D., Mendonça, E., 2014. Phytomass production and nutrient accumulation by green manure species. Revista Ceres 61(5): 732-739.

Mureithi, J.G., Gachene, C.K.K., Ojiem, J., 2003. The role of green manure legumes in smallholder farming systems in Kenya: the legume research network project. Tropical and Subtropical Agroecosystems 1(2-3): 57-70.

Partelli, F.L., Vieira, H.D., Ferreira, E.P.D.B., Viana, A.P., Espindola, J.A.A., Caballero, S.S.U., Boddey, M.R., 2011. Biologic dinitrogen fixation and nutrient cycling in cover crops and their effect on organic Conilon coffee. Semina: Ciências Agrárias, Londrina 32(3): 995-1006.

Pereira, N.S., Soares, I., Miranda, F.R.D., 2016. Decomposition and nutrient release of leguminous green manure species in the Jaguaribe-Apodi region, Ceará, Brazil. Ciência Rural 46(6): 970-975.

Precoppe, M., 2005. Jack Bean/Wonder Bean Canavalia ensiformis. Available at [Access date: 06.02.2020]: https://www.uni-hohenheim.de/www380/380a/LectureNotes/Canavalia.pdf

Rajwade, V.B., Banafar, R.N.S., Pathak, A.C., 2000. Growth analysis of potato in relation to biodynamic package and organic manures with chemical fertilisers. Journal of the Indian Potato Association 27(1/2): 55-58.

Renté-Martí, O., Nápoles-García, M.C., Pablos-Reyes, P., Vargas-Batis, B., 2018. Effect of Canavalia ensiformis (L.) on physical properties of differentiated Fluvisol soil in Santiago de Cuba. Cultivos Tropicales 39(2): 59-64.

Sant'Anna, S.A.C., Martins, M.R., Goulart, J.M., Araújo, S.N., Araújo, E.S., Zaman, M., Jantalia, C.P., Alves B.J.R., Boddey R.M., Urquiaga, S., 2018. Biological nitrogen fixation and soil N2O emissions from legume residues in an Acrisol in SE Brazil. Geoderma Regional 15, e00196.

Saldaña-Acosta, J.M., 2017. Isolation and identification of native strains of Rhizobium phaseoli in soil of the dam of the youth of Marin, Nuevo León. Revista Iberoamericana de Producción Académica y Gestión Educativa 4(7): 1-22.

Serrano-Altamirano, V., García-Cano, M.A., 2007. Reducing Erosion and Improving Fertility of Hillside Soils Using Legume Cover Crops. Terra Latinoamericana 25(4): 427-435.

Starovoytov, A., Gallagher, R.S., Jacobsen, K.L., Kaye, J.P., Bradley, B., 2010. Management of small grain residues to retain legume-derived nitrogen in corn cropping systems. Agronomy Journal 102: 895-903.

Statgraphics, C., 2014. Statgraphics Centurion XVII. User Manual. Version, 17 (8.0). Herndon, USA.

Sulieman, S., Ha, C.V., Schulze, J., Tran, L.S.P., 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany 64(10): 2701-2712.

Vanek, S., 2009. Adaptación y respuesta a la fertilización fosforada de especies leguminosas en el Norte de Potosí, Bolivia. Revista de Agricultura 61(45): 15-22.

Vera-Núñez, J.A., Infante-Santiago, J.P., Velasco-Velasco, V., Salgado-García, S., Palma-López, D.J., Grageda-Cabrera, O.A., Cárdenas-Navarro, R., Peña Cabriales, J.J., 2008. Influence of P fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soil from the Tabasco state, Mexico. Journal of Sustainable Agriculture 31(3): 25-42.

Weisany, W., Raei, Y., Allahverdipoor, K.H., 2013. Role of some of mineral nutrients in biological nitrogen fixation. Bulletin of Environment, Pharmacology and Life Sciences 2(4): 77-84.

Werner, R., Leihner, D., 2005. Análisis del crecimiento vegetal, En: Villalobos R.E., (ed.). Vol 7, Editorial Universidad de Costa Rica, Turrialba. 41p.

WRB. 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations (FAO). Rome. 192p. Available at [Access date: 25.03.2020]: http://www.fao.org/3/i3794en/I3794en.pdf

Zapata, H.I., Rodríguez, M.R., García, L.P.M., Salcedo, P.E., Lara, R.A.H., Zamora, N.J.F., 2019. Dry matter yield and nitrogen content in Lupinus spp. (Leguminosae) with potential as a green manure. Legume Research 42(4): 523-527.

Abstract

The aim of the current study was to assess the performance of Canavalia ensiformis and Mucuna deeringiana (Leguminosae) as a green manure in the agricultural soil of the Frailesca region of Chiapas, México, in terms of aboveground biomass accumulation, plant height, number of leaves, canopy coverage, and the accumulation of nitrogen (N), phosphorus (P), and potassium (K). Each species was sowed at two population densities under a randomized complete block design with three replications. Every 30 days after sowing (DAS), the following variables were quantified: plant length, number of leaves, canopy coverage, biomass yield, and N, P, and K content. A variance analysis and mean comparison test (Tukey 0.05) were performed for each variable. The biomass yield in M. deeringiana fluctuated from 9150 to 33,160 kg ha-1 on a fresh basis and from 4490 to 15,890 kg ha-1 on a dry basis, whereas the yield in C. ensiformis varied from 9343 to 26,390 kg ha-1 and from 4513 to 13,150 kg ha-1, respectively. The longest recorded plant length was 513.00 cm in M. deeringiana and 155 cm in C. ensiformis, with a total of 353 and 322 leaves, respectively. The accumulation of N, P, and K was 463.99 kg ha-1, 84.22 kg ha-1, and 49.26 kg ha-1 in M. deeringiana and 341.90 kg ha-1, 43.40 kg ha-1, and 36.82 kg ha-1 in C. ensiformis, respectively. Both C. ensiformis and M. deeringiana have potential as green manure for the Frailesca region of Chiapas in terms of biomass production and N accumulation.

Keywords: Canavalia ensiformis, Canopy coverage, dry matter, ecotechnologies, legumes, Mucuna deeringiana.

References

Aguilar, J.C.E., 2014. La agricultura sostenible en el Valle del Tulijá, Chiapas, México. Universidad Autónoma de Chiapas, México. 183p.

Aguilar, J.C.E., Gadámez, J.G., Aguilar, F.B.M., Hernández, F.G., Solis, H.V., 2019. Efficiency of the corn-bean-squash polyculture under organic management in la Frailesca, Chiapas, Mexico. Revista Científica Agroecosistemas 7(3): 64-72.

Amézquita, A.E., Rao, I.M., Rivera, M., Corrales, I.I., Bernal, J.H., 2013. Sistemas agropastoriles: un enfoque integrado para el manejo sostenible de oxisoles de los Llanos Orientales de Colombia. Centro Internacional de Agricultura Tropical (CIAT), Ministerio de Agricultura y Desarrollo Rural (MADR)-Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Cali, CO. 288p.

Barrientos-Llanos, H., del Castillo-Gutiérrez, C.R., García-Cárdenas, M., 2015. Functional analysis of growth, biomass accumulation and translocation of dry matter eight vegetables grown in greenhouses. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales 2(1): 76-86.

Bianco, L., 2020. Principales aspectos de la nodulación y fijación biológica de nitrógeno en Fabáceas. Idesia (Arica) 38(2): 21-29.

Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis. Part 3, Chemical Methods, Sparks, D.L., Page, A.L, Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Ed.). American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, USA. pp. 1085-1022.

Buckles, D., Triomphe, B., 1999. Adoption of mucuna in the farming system of northern Honduras. Agroforestry Systems 47: 67-91.

Bunch, R., 2016. ¿Cómo prohibir las sequías? Aprendiendo de los africanos que ya aprendieron de los latinoamericanos. LEISA Revista de Agroecología 32(2): 8-11.

Calegari, A., Alcântara, P.B., Muyasaka, S., Amado, T.J.C., 1993. Caracterização das principais espécies de abonos verdes, En: Adubação verde no sul do Brasil. 2a ed. Asses e Serv a Proj em Agricultura Alternat (AS-PTA), Costa, M.B., (Ed.). Rio de Janeiro, Brasil, pp. 206-319.

Carter, M.R., Gregorich, E.G., 2007. Soil sampling and methods of analysis. CRC press.

Chapman, H.D., Parker, F.P., Cotin, T.A., 1984. Metodos de Anallsls para Suelos, Plantas y Agua, Trillas, Mexico. 195p.

Córdova-Sánchez, S., Castelán-Estrada, M., Salgado-García, S., Palma-López, J.D., Vera-Núñez, J.A., Peña-Cabriales, J.J., Lagunes-Espinoza, L.C., Cárdena-Navarro, R., 2011. Biological nitrogen fixation by three fabaceas (Leguminosae) in acid soil of Tabasco, Mexico. Avances en Investigación Agropecuaria 15(1): 31-50.

Costa-Mello, S.D., Nimi-Kassoma, J., Quesada-Roldán, G., Silva, A.D.D., Donegá, M.A., Santos-Dias, C.T.D., 2018. Green manure in parsley production and soil fertility in Piracicaba, Brazil. Revista Colombiana de Ciencias Hortícolas 12(1): 183-191.

Cruz, L.J., da Silva, S.L., dos Santos, S N.C., Pelacani, C.R., 2014. Effect of cover crops on the aggregation of a soil cultivated with papaya (Carica papaya L.). Scientia Horticulturae 172(9): 82-85.

Divito, G., Sadras, V., 2014. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Research 156: 161-171.

Eilittä, M., Carsky, R.J., 2003. Efforts to improve the potential of Mucuna as a food and feed crop: background to the workshop. Tropical and Subtropical Agroecosystems 1(2): 47-55.

Fishman, M.J., Downs, S.C., 1966, Method for analysis of selected metals in water by atomic absorption: U.S. Geological Survey Water-Supply Paper 1540-C, 36-8 p.

Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., Seneweera, S., 2018. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell & Environment 41(6): 1233-1246.

García-Hernández, J.L., Murillo-Amador, B., Nieto-Garibay, A., Fortis-Hernández, M., Márquez-Hernández, C., Castellanos-Pérez, E., Quiñones-Vera, J.J., Ávila-Serrano, N.Y., 2010. Research Advances and Prospects on the Use of Green Manures in Agriculture. Terra Latinoamericana 28(4): 391-399.

Gerónimo, C.A., Salgado, G.S., Catzin, R.F.J., Ortiz, C.A.I., 2002. Descomposición del follaje de nescafé (Mucuna spp.) en la época de seca. Interciencia 27(11): 625-630.

Mangaravite, J.C., Passos, R., Andrade, F., Burak, D., Mendonça, E., 2014. Phytomass production and nutrient accumulation by green manure species. Revista Ceres 61(5): 732-739.

Mureithi, J.G., Gachene, C.K.K., Ojiem, J., 2003. The role of green manure legumes in smallholder farming systems in Kenya: the legume research network project. Tropical and Subtropical Agroecosystems 1(2-3): 57-70.

Partelli, F.L., Vieira, H.D., Ferreira, E.P.D.B., Viana, A.P., Espindola, J.A.A., Caballero, S.S.U., Boddey, M.R., 2011. Biologic dinitrogen fixation and nutrient cycling in cover crops and their effect on organic Conilon coffee. Semina: Ciências Agrárias, Londrina 32(3): 995-1006.

Pereira, N.S., Soares, I., Miranda, F.R.D., 2016. Decomposition and nutrient release of leguminous green manure species in the Jaguaribe-Apodi region, Ceará, Brazil. Ciência Rural 46(6): 970-975.

Precoppe, M., 2005. Jack Bean/Wonder Bean Canavalia ensiformis. Available at [Access date: 06.02.2020]: https://www.uni-hohenheim.de/www380/380a/LectureNotes/Canavalia.pdf

Rajwade, V.B., Banafar, R.N.S., Pathak, A.C., 2000. Growth analysis of potato in relation to biodynamic package and organic manures with chemical fertilisers. Journal of the Indian Potato Association 27(1/2): 55-58.

Renté-Martí, O., Nápoles-García, M.C., Pablos-Reyes, P., Vargas-Batis, B., 2018. Effect of Canavalia ensiformis (L.) on physical properties of differentiated Fluvisol soil in Santiago de Cuba. Cultivos Tropicales 39(2): 59-64.

Sant'Anna, S.A.C., Martins, M.R., Goulart, J.M., Araújo, S.N., Araújo, E.S., Zaman, M., Jantalia, C.P., Alves B.J.R., Boddey R.M., Urquiaga, S., 2018. Biological nitrogen fixation and soil N2O emissions from legume residues in an Acrisol in SE Brazil. Geoderma Regional 15, e00196.

Saldaña-Acosta, J.M., 2017. Isolation and identification of native strains of Rhizobium phaseoli in soil of the dam of the youth of Marin, Nuevo León. Revista Iberoamericana de Producción Académica y Gestión Educativa 4(7): 1-22.

Serrano-Altamirano, V., García-Cano, M.A., 2007. Reducing Erosion and Improving Fertility of Hillside Soils Using Legume Cover Crops. Terra Latinoamericana 25(4): 427-435.

Starovoytov, A., Gallagher, R.S., Jacobsen, K.L., Kaye, J.P., Bradley, B., 2010. Management of small grain residues to retain legume-derived nitrogen in corn cropping systems. Agronomy Journal 102: 895-903.

Statgraphics, C., 2014. Statgraphics Centurion XVII. User Manual. Version, 17 (8.0). Herndon, USA.

Sulieman, S., Ha, C.V., Schulze, J., Tran, L.S.P., 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany 64(10): 2701-2712.

Vanek, S., 2009. Adaptación y respuesta a la fertilización fosforada de especies leguminosas en el Norte de Potosí, Bolivia. Revista de Agricultura 61(45): 15-22.

Vera-Núñez, J.A., Infante-Santiago, J.P., Velasco-Velasco, V., Salgado-García, S., Palma-López, D.J., Grageda-Cabrera, O.A., Cárdenas-Navarro, R., Peña Cabriales, J.J., 2008. Influence of P fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soil from the Tabasco state, Mexico. Journal of Sustainable Agriculture 31(3): 25-42.

Weisany, W., Raei, Y., Allahverdipoor, K.H., 2013. Role of some of mineral nutrients in biological nitrogen fixation. Bulletin of Environment, Pharmacology and Life Sciences 2(4): 77-84.

Werner, R., Leihner, D., 2005. Análisis del crecimiento vegetal, En: Villalobos R.E., (ed.). Vol 7, Editorial Universidad de Costa Rica, Turrialba. 41p.

WRB. 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations (FAO). Rome. 192p. Available at [Access date: 25.03.2020]: http://www.fao.org/3/i3794en/I3794en.pdf

Zapata, H.I., Rodríguez, M.R., García, L.P.M., Salcedo, P.E., Lara, R.A.H., Zamora, N.J.F., 2019. Dry matter yield and nitrogen content in Lupinus spp. (Leguminosae) with potential as a green manure. Legume Research 42(4): 523-527.



Eurasian Journal of Soil Science