Eurasian Journal of Soil Science

Volume 11, Issue 4, Oct 2022, Pages 316-321
DOI: 10.18393/ejss.1125125
Stable URL: http://ejss.fess.org/10.18393/ejss.1125125
Copyright © 2022 The authors and Federation of Eurasian Soil Science Societies



Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L.

X

Article first published online: 01 Jun 2022 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 39 | 222

Dimova,M., Iutynska,G., Levchuk,I., Yamborko,N., 2022. Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L.. Eurasian J Soil Sci 11(4):316-321. DOI : 10.18393/ejss.1125125
Dimova,M.,Iutynska,G.Levchuk,I.,& Yamborko,N. Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L. Eurasian Journal of Soil Science, 11(4):316-321. DOI : 10.18393/ejss.1125125
Dimova,M.,Iutynska,G.Levchuk,I., and ,Yamborko,N."Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L." Eurasian Journal of Soil Science, 11.4 (2022):316-321. DOI : 10.18393/ejss.1125125
Dimova,M.,Iutynska,G.Levchuk,I., and ,Yamborko,N. "Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L." Eurasian Journal of Soil Science,11(Oct 2022):316-321 DOI : 10.18393/ejss.1125125
M,Dimova.G,Iutynska.I,Levchuk.N,Yamborko "Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L." Eurasian J. Soil Sci, vol.11, no.4, pp.316-321 (Oct 2022), DOI : 10.18393/ejss.1125125
Dimova,Mariia ;Iutynska,Galyna ;Levchuk,Iryna ;Yamborko,Nadiya Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L.. Eurasian Journal of Soil Science, (2022),11.4:316-321. DOI : 10.18393/ejss.1125125

How to cite

Dimova, M., Iutynska, G., Levchuk, I., Yamborko, N., 2022. Bioremediation of HCB-contaminated soil using Comamonas testosteroni and Zea mays L.. Eurasian J. Soil Sci. 11(4): 316-321. DOI : 10.18393/ejss.1125125

Author information

Mariia Dimova , D.K. Zabolotny Insitute of Microbiology and Virology of the NAS of Ukraine, Kyiv, Ukraine
Galyna Iutynska , D.K. Zabolotny Insitute of Microbiology and Virology of the NAS of Ukraine, Kyiv, Ukraine
Iryna Levchuk , SE Ukrmetrteststandart, Metrologichna str., 4, Kyiv, Ukraine
Nadiya Yamborko , D.K. Zabolotny Insitute of Microbiology and Virology of the NAS of Ukraine, Kyiv, Ukraine

Publication information

Article first published online : 01 Jun 2022
Manuscript Accepted : 13 May 2022
Manuscript Received: 22 Nov 2021
DOI: 10.18393/ejss.1125125
Stable URL: http://ejss.fesss.org/10.18393/ejss.1125125

Abstract

Bioremediation measures to restore soil ecosystems are environmentally safe, promising and relevant. Soil ecosystems contaminated with hexachlorobenzene require remediation measures. Studying the effectiveness of applying the microbial remediator Comamonas testosteroni UCM B-400, phytoremediator Zea mays L. cultivar Olena and microbial and phytoremediation complex to remove hexachlorobenzene contamination was carried out. The HCB content was determined by chromatographic method, the microbial groups reactions to application of various remediators in the soil were studied by classical microbiological methods. The results showed that the most effective is the complex using remediators Comamonas testosteroni UCM B-400 and Zea mays L. cultivar Olena, where HCB content was reduced to 82%.

Keywords

Bioremediation, phytoremediator, bacterial strain-destructor, hexachlorobenzene.

Corresponding author

References

Arslan, M., Imran, A., Khan, Q.M., Afzal, M., 2017. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research 24: 4322–4336.

Becerra-Castro, C., Prieto-Fernández, Á., Kidd, P.S., Weyens, N., Rodríguez-Garrido, B., Touceda-González, M., Acea, M.J., Vangronsveld, J., 2013. Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant and Soil 362: 247–260.

Carvalho, P. N., Basto, M. C. P., Almeida, C. M. R., Brix, H., 2014. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Research 21(20): 11729–11763. 

Chen, I.M., Wanitchapichat, W., Jirakittayakorn, T., Sanohniti, S., Sudjarid, W., Wantawin, C., Anotai, J., 2010. Hexachlorobenzene dechlorination by indigenous sediment microorganisms. Journal of Hazardous Materials 177(1-3): 244–250.

Chigbo, C., Batty, L., 2013. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Environmental Science and Pollution Research 21(4): 3051–3059. 

Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72(3): 313–327.

Dimova, M., Dankevych, L., Yamborko, N., Iutynska, G., 2022.  Polyphasic taxonomy analyse of Comamonas testosteroni resistant to hexachlorobenzene. Journal of Microbiology, Biotechnology and Food Sciences 11(5): e4711.

Dubchak, S., Bondar, O., 2018. Bioremediation and phytoremediation: Best approach for rehabilitation of soils for future use. In: Remediation Measures for radioactively contaminated areas. Gupta, D., Voronina, A. (Eds.). Springer, Cham. pp. 201–221.

EPA, 1993. Method 608.2: The determination of certain organochlorine pesticides in municipal and industrial wastewater. United States Environmental Protection Agency. 19p. Available at [access date: 22.11.2021]:  https://www.epa.gov/sites/default/files/2015-10/documents/method_608-2_1993.pdf

Ghosal, D., Ghosh, S., Dutta, T., Ahn, Y., 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbioljgy 7: 1369.   

Gupta, A., Patel, A.K., Gupta, D., Singh, G., Mishra, V.K., 2020. Rhizospheric remediation of organic pollutants from the soil; a green and sustainable technology for soil clean up. In: Abatement of Environmental Pollutants.. Singh, P., Kumar, A., Borthakur, A. (Eds.). Elsevier. pp. 263–286.

Hong, Y., Liao, D., Chen, J., Khan, S., Su, J., Li, H., 2015. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environmental Science and Pollution Research 22: 7071–7081. 

Jaiswal, D.K., Verma, J.P., Yadav, J., 2016. Microbe Induced Degradation of Pesticides in Agricultural Soils. In: Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering. Singh, S.N. (Ed.). Springer, Cham. pp 167–189.

Jha, P., Panwar, J., Jha, P.N., 2015. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. International Journal of Environmental Science and Technology 12: 789–802.

Khoudi, H., Maatar, Y., Brini, F., Fourati, A., Ammar, N., Masmoudi, K., 2013. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environmental Science and Pollution Research 20(1): 270–280. 

Levchuk, I.V., Kishchenko, V.A., Petik, P.F., 2008. Technology for the process of quick analysis of organochlorine pesticides by the GRH-EZD method using two columns. Bulletin of the National Technical University. 3: 71–78. [in Ukrainian].

Liu, L., Jiang, C.Y., Liu, X.-Y., Wu, J.F., Han, J.G., Liu, S.J., 2007. Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology 9(2): 465–473.

Oberai, M., Khanna, V., 2018. Rhizoremediation – plant microbe interactions in the removal of pollutants. International Journal of Current Microbiology and Applied Sciences 7(1): 2280-2287.

Singh, A., Parmar, N., Kuhad, R.C., Ward, O.P., 2011. Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. In: Bioaugmentation, Biostimulation and Biocontrol. Singh, A., Parmar, N., Kuhad, R. (Eds.). Soil Biology, Vol 108. Springer, Berlin, Heidelberg. pp.1-23.

Stockholm Convention 2019. Stockholm Convention on persistent organic pollutions (POPs) UN Environment Programme. 77p. Available at [access date: 22.11.2021]:  http://www.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP-CONVTEXT-2021.English.pdf        

Tepper E.Z., Shilnikova V.K., Pereverzeva G.I., 2004. Practice on microbiology. In: Educational manual for high schools.  Shilnikova V.K. (Eds). Drofa, Moscow, Russia. 256 p. [in Russian]

Yan, D.Z., Mao, L.Q., Li, C.Z., Liu, J., 2014. Biodegradation of hexachlorobenzene by a constructed microbial consortium. World Journal of Microbiology and Biotechnology, 31(2): 371–377.

Zhang, C., Wang, B., Dai, X., Li, S., Lu, G., Zhou, Y., 2017. Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands. Environmental Science and Pollution Research 24: 11483–11492.

Abstract

Bioremediation measures to restore soil ecosystems are environmentally safe, promising and relevant. Soil ecosystems contaminated with hexachlorobenzene require remediation measures. Studying the effectiveness of applying the microbial remediator Comamonas testosteroni UCM B-400, phytoremediator Zea mays L. cultivar Olena and microbial and phytoremediation complex to remove hexachlorobenzene contamination was carried out. The HCB content was determined by chromatographic method, the microbial groups reactions to application of various remediators in the soil were studied by classical microbiological methods. The results showed that the most effective is the complex using remediators Comamonas testosteroni UCM B-400 and Zea mays L. cultivar Olena, where HCB content was reduced to 82%.

Keywords: Bioremediation, phytoremediator, bacterial strain-destructor, hexachlorobenzene.

References

Arslan, M., Imran, A., Khan, Q.M., Afzal, M., 2017. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research 24: 4322–4336.

Becerra-Castro, C., Prieto-Fernández, Á., Kidd, P.S., Weyens, N., Rodríguez-Garrido, B., Touceda-González, M., Acea, M.J., Vangronsveld, J., 2013. Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant and Soil 362: 247–260.

Carvalho, P. N., Basto, M. C. P., Almeida, C. M. R., Brix, H., 2014. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Research 21(20): 11729–11763. 

Chen, I.M., Wanitchapichat, W., Jirakittayakorn, T., Sanohniti, S., Sudjarid, W., Wantawin, C., Anotai, J., 2010. Hexachlorobenzene dechlorination by indigenous sediment microorganisms. Journal of Hazardous Materials 177(1-3): 244–250.

Chigbo, C., Batty, L., 2013. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Environmental Science and Pollution Research 21(4): 3051–3059. 

Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72(3): 313–327.

Dimova, M., Dankevych, L., Yamborko, N., Iutynska, G., 2022.  Polyphasic taxonomy analyse of Comamonas testosteroni resistant to hexachlorobenzene. Journal of Microbiology, Biotechnology and Food Sciences 11(5): e4711.

Dubchak, S., Bondar, O., 2018. Bioremediation and phytoremediation: Best approach for rehabilitation of soils for future use. In: Remediation Measures for radioactively contaminated areas. Gupta, D., Voronina, A. (Eds.). Springer, Cham. pp. 201–221.

EPA, 1993. Method 608.2: The determination of certain organochlorine pesticides in municipal and industrial wastewater. United States Environmental Protection Agency. 19p. Available at [access date: 22.11.2021]:  https://www.epa.gov/sites/default/files/2015-10/documents/method_608-2_1993.pdf

Ghosal, D., Ghosh, S., Dutta, T., Ahn, Y., 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbioljgy 7: 1369.   

Gupta, A., Patel, A.K., Gupta, D., Singh, G., Mishra, V.K., 2020. Rhizospheric remediation of organic pollutants from the soil; a green and sustainable technology for soil clean up. In: Abatement of Environmental Pollutants.. Singh, P., Kumar, A., Borthakur, A. (Eds.). Elsevier. pp. 263–286.

Hong, Y., Liao, D., Chen, J., Khan, S., Su, J., Li, H., 2015. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environmental Science and Pollution Research 22: 7071–7081. 

Jaiswal, D.K., Verma, J.P., Yadav, J., 2016. Microbe Induced Degradation of Pesticides in Agricultural Soils. In: Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering. Singh, S.N. (Ed.). Springer, Cham. pp 167–189.

Jha, P., Panwar, J., Jha, P.N., 2015. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. International Journal of Environmental Science and Technology 12: 789–802.

Khoudi, H., Maatar, Y., Brini, F., Fourati, A., Ammar, N., Masmoudi, K., 2013. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environmental Science and Pollution Research 20(1): 270–280. 

Levchuk, I.V., Kishchenko, V.A., Petik, P.F., 2008. Technology for the process of quick analysis of organochlorine pesticides by the GRH-EZD method using two columns. Bulletin of the National Technical University. 3: 71–78. [in Ukrainian].

Liu, L., Jiang, C.Y., Liu, X.-Y., Wu, J.F., Han, J.G., Liu, S.J., 2007. Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology 9(2): 465–473.

Oberai, M., Khanna, V., 2018. Rhizoremediation – plant microbe interactions in the removal of pollutants. International Journal of Current Microbiology and Applied Sciences 7(1): 2280-2287.

Singh, A., Parmar, N., Kuhad, R.C., Ward, O.P., 2011. Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. In: Bioaugmentation, Biostimulation and Biocontrol. Singh, A., Parmar, N., Kuhad, R. (Eds.). Soil Biology, Vol 108. Springer, Berlin, Heidelberg. pp.1-23.

Stockholm Convention 2019. Stockholm Convention on persistent organic pollutions (POPs) UN Environment Programme. 77p. Available at [access date: 22.11.2021]:  http://www.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP-CONVTEXT-2021.English.pdf        

Tepper E.Z., Shilnikova V.K., Pereverzeva G.I., 2004. Practice on microbiology. In: Educational manual for high schools.  Shilnikova V.K. (Eds). Drofa, Moscow, Russia. 256 p. [in Russian]

Yan, D.Z., Mao, L.Q., Li, C.Z., Liu, J., 2014. Biodegradation of hexachlorobenzene by a constructed microbial consortium. World Journal of Microbiology and Biotechnology, 31(2): 371–377.

Zhang, C., Wang, B., Dai, X., Li, S., Lu, G., Zhou, Y., 2017. Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands. Environmental Science and Pollution Research 24: 11483–11492.



Eurasian Journal of Soil Science