Eurasian Journal of Soil Science

Volume 11, Issue 3, Jun 2022, Pages 216-224
DOI: 10.18393/ejss.1063980
Stable URL: http://ejss.fess.org/10.18393/ejss.1063980
Copyright © 2022 The authors and Federation of Eurasian Soil Science Societies



Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions

X

Article first published online: 27 Jan 2022 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 87 | 738

Qureshi,M., Iqbal,M., Rahman,S., Anwar,J., Tanveer,M., Shehzad,A., Ali,M., Aftab,M., Saleem,U., Ehsan,S., 2022. Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions. Eurasian J Soil Sci 11(3):216-224. DOI : 10.18393/ejss.1063980
Qureshi,M.,Iqbal,M.Rahman,S.Anwar,J.Tanveer,M.Shehzad,A.Ali,M.Aftab,M.Saleem,U.,& Ehsan,S. Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions Eurasian Journal of Soil Science, 11(3):216-224. DOI : 10.18393/ejss.1063980
Qureshi,M.,Iqbal,M.Rahman,S.Anwar,J.Tanveer,M.Shehzad,A.Ali,M.Aftab,M.Saleem,U., and ,Ehsan,S."Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions" Eurasian Journal of Soil Science, 11.3 (2022):216-224. DOI : 10.18393/ejss.1063980
Qureshi,M.,Iqbal,M.Rahman,S.Anwar,J.Tanveer,M.Shehzad,A.Ali,M.Aftab,M.Saleem,U., and ,Ehsan,S. "Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions" Eurasian Journal of Soil Science,11(Jun 2022):216-224 DOI : 10.18393/ejss.1063980
M,Qureshi.M,Iqbal.S,Rahman.J,Anwar.M,Tanveer.A,Shehzad.M,Ali.M,Aftab.U,Saleem.S,Ehsan "Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions" Eurasian J. Soil Sci, vol.11, no.3, pp.216-224 (Jun 2022), DOI : 10.18393/ejss.1063980
Qureshi,M. Amjad ;Iqbal,M. Zaffar ;Rahman,Sajid ur ;Anwar,Javed ;Tanveer,M. Hammad ;Shehzad,Armghan ;Ali,M. Asif ;Aftab,Muhammad ;Saleem,Usama ;Ehsan,Shabana Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions. Eurasian Journal of Soil Science, (2022),11.3:216-224. DOI : 10.18393/ejss.1063980

How to cite

Qureshi, M., Iqbal, M., Rahman, S., Anwar, J., Tanveer, M., Shehzad, A., Ali, M., Aftab, M., Saleem, U., Ehsan, S., 2022. Relative potential of Rhizobium sp for improving the rice-wheat crop in the semi-arid regions. Eurasian J. Soil Sci. 11(3): 216-224. DOI : 10.18393/ejss.1063980

Author information

M. Amjad Qureshi , Soil Bacteriology Section, Ayub Agriculture Research Institute Faisalabad, Pakistan
M. Zaffar Iqbal , Agricultural Biotechnology Research Institute, Ayub Agriculture Research Institute Faisalabad, Pakistan
Sajid ur Rahman , Agricultural Biotechnology Research Institute, Ayub Agriculture Research Institute Faisalabad, Pakistan
Javed Anwar , Wheat Research Institute, Ayub Agriculture Research Institute Faisalabad, Pakistan
M. Hammad Tanveer , Wheat Research Institute, Ayub Agriculture Research Institute Faisalabad, Pakistan
Armghan Shehzad , National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Islamabad, Pakistan
M. Asif Ali , Soil Bacteriology Section, Ayub Agriculture Research Institute Faisalabad, Pakistan
Muhammad Aftab , Soil Chemistry Section, Institute of Soil Chemistry and Environmental Sciences, Faisalabad, Pakistan
Usama Saleem , Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
Shabana Ehsan , Soil Bacteriology Section, Ayub Agriculture Research Institute Faisalabad, Pakistan

Publication information

Article first published online : 27 Jan 2022
Manuscript Accepted : 10 Jan 2022
Manuscript Received: 09 Nov 2021
DOI: 10.18393/ejss.1063980
Stable URL: http://ejss.fesss.org/10.18393/ejss.1063980

Abstract

Soil Microbiologists have been concentrating on manipulation of rhizosphere microbes in cereals, but many researchers have reported that rhizobia can act as plant growth promoting rhizobacteria (PGPR). Rhizobium species impacted the crop ontogeny by root / endophytic colonization, producing phytohormones, efficient nutrient use and nutrient solubilization / mineralization. Field studies were performed at Soil Bacteriology Section and Soil Chemistry Section, Faisalabad to assess the comparative potential of Rhizobium species for promoting the growth, yield of wheat and rice. Auxin biosynthesis potential of isolates of Rhizobium species (mung (Vigna radiata), berseem (Trifolium alexandrinum), chickpea (Cicer arietinum), lentil (Lens culinaris) and peanut (Arachis hypogaea)) was determined and isolates of each species having higher values were used for field experiments. Assay for root / shoot elongation, root colonization in plates were carried out under controlled conditions. The rhizosphere soil of wheat and rice were assayed for the Indole Acedic Acid (IAA) content 15 and 30 days after germination / transplanting, respectively. Results revealed that significant increase was observed in the yield parameters of wheat and rice. Highest wheat grains were produced i.e., 4917 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4823 with Rhizobium sp of berseem (Br3) than control i.e., 4500 kg ha-1. Similarly, the maximum paddy yield i.e., 4667 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4625 Rhizobium sp of berseem (Br3) inoculation was obtained as compared to control i.e., 4208 kg ha-1. Other physical parameters of wheat and rice also showed positive response to inoculation and have elevated levels of IAA in the rhizosphere of inoculated treatments. Results clearly demonstrated that Rhizobium species increased the yield of rice and wheat.

Keywords

Rhizobium species, IAA equivalents, PGPR, Interaction, wheat, rice.

Corresponding author

References

Adesemoye, A.O., Kloepper, J.W., 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85: 1–12.

Akhtar, N., Arshad, I., Shakir, M.A., Qureshi, M.A., Sehrish, J., Ali, L., 2013. Co-inoculation with Rhizobium and Bacillus sp to improve the phosphorus availability and yield of wheat (Triticum aestivum L.). The Journal of Animal and Plant Science 23(1): 190-197.

Berger, L.R., Stamford, N.P., Santos, C.E.R.S., Freitas, A.D.S, Franco, L.O., Stamford, T.C.M., 2013. Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. Journal of Soil Science and Plant Nutrition 13(3), 592-603.

Bhat, M. A., Rasool, R., Ramzan, S., 2019. Plant Growth Promoting Rhizobacteria (PGPR) for sustainable and eco-Friendly Agriculture. Acta Scientific Agriculture 3(1): 23-25.

Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-total. In: Methods of Soil Analysis, 2nd edition. Page, A.L., Miller, R.H., Keeney, D.R. (Eds.). American Society of Agronomy Inc., Madison, Wisconsin, USA. pp. 595-624.

Datta, B., Chakrabartty, P.K., 2014. Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L.       3 Biotech 4: 391–401.

Dazzo, F.B., Yannim, Y.G., 2006. The natural Rhizobium-cereal crop association as an example of plant-bacterial interaction. In: Biological approaches to sustainable soil systems. Uphoff N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Sanginga, N., Thies, J. (Eds.). CRC Press, Boca Raton, pp 109–127.

Dobbelaere, S., Vanderleyden, J., Okon, Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Review in Plant Sciences 22(2): 107–149.

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L.L., Krishnamurthy, L., 2015. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5: 355–377.

Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., Patra, J.K., 2017. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206: 131-140.

Hardoim, P.R., van Overbeek, L.S., van Elsas, J.D., 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16(10): 463–471.

Hemissi, I., Mabrouk, Y., Abdi, N., Bouraoui, M., Saidi, M., Sifi, B., 2011. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. African Journal of Microbiology Research 5: 4080–4090.

Hossain, M.S., Mårtensson, A., 2008. Potential use of Rhizobium spp. to improve fitness of non-nitrogen-fixing plants. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 58(4): 352-358.

Hussain, M. I., Asghar, H. N. Arshad, M., Shahbaz, M., 2013. Screening of multi-traits rhizobacteria to improve maize growth under axenic conditions. The Journal of Animal and Plant Science 23(2):514-520.

Hussain, M.B., Mehboob, I., Zahir, Z.A., Naveed, M., Asghar, H.N., 2009. Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil and Environment 28(1): 49-55.

Hussain, M.B., Mahmood, S., Ahmed, N., Nawaz, H., 2018. Rhizobial inoculation for improving growth physiology, nutrition and yield of maize under drought stress conditions. Pakistan Journal of Botany 50(5): 1681-1689.

Hussain, M.B., Zahir, Z.A., Asghar, H. N., Asgher, N., 2014a. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? International Journal of Agriculture and Biology 16(1): 3‒13.

Hussain, M.B., Zahir, Z.A., Asghar, H.N., Mahmood, S., 2014b. Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Science Society of America Journal 78(2): 538-545.

Hussain, M.B., Zahir, Z.A., Asghar, H.N., Mubaraka, R., Naveed, M., 2016. Efficacy of rhizobia for improving photosynthesis, productivity and mineral nutrition of maize. CLEAN – Soil, Air, Water 44(11): 1564-1571.

Hussain, M.B., Zahir, Z.A., Mehboob, I., Mahmood, S., Ahmed, N., Tanveer-ul-Haq, Ahmad, I., Imran, M., 2019. Mesorhizobium ciceri-CR-39 inoculation to wheat for drought tolerance at critical growth stages. Pakistan Journal of Botany 51(1): 65-72.

Ibiene, A.A., Agogbua, J. U., Okonko, I.O., Nwachi, G. N., 2012. Plant growth promoting rhizobacteria (PGPR) as biofertilizer: Effect on growth of Lycopersicum esculentus. American Journal of Science 8(2): 318-324.

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., Lin, W., 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS One 14(5): e0217018.

Lupwayi, N.Z., Kennedy, A.C., Chirwa, R.M., 2011. Grain legume impacts on soil biological processes in sub-Saharan Africa. African Journal of Plant Science 5(1): 1-7.

Mehboob, I., Zahir, Z.A., Mahboob, A., Shahzad, S.M., Jawad, A., Arshad, M., 2008. Preliminary screening of Rhizobium isolates for improving growth of maize seedlings under axenic conditions. Soil and Environment 27: 64-71.

Mehboob, I., Zahir, Z.A., Arshad, M., Tanveer, A., Farooq, A.,, 2011. Growth promoting activities of different Rhizobium spp. in wheat. Pakistan Journal of Botany 43: 1643-1650.

Mukhongo, R.W., Tumuhairwe, J. B., Ebanyat, P., AbdelGadir, A. H., Thuita, M., Masso, C., 2017. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields. Frontiers in Plant Science 8:219.

Nagy, P.T., Pinté, T., 2015. Effects of Foliar Biofertilizer Sprays on Nutrient Uptake, Yield, and Quality Parameters of Blaufrankish (Vitis vinifera L.) Grapes. Communications in Soil Science and Plant Analysis 46(S1): 219-227.

Naher, U.A., Othman, R., Shamsuddin, H.J.Z., Saud, H.M., Ismail, M.R., 2009. Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. International Journal of Agriculture and Biology 11: 586-590.

Noreen, S., Ali, B., Hasnain, S., 2012. Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Annals of Microbiology 62: 411–417.

Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: Methods of soil analysis. Part 2 Chemical and microbiological properties. 2nd edition. Page, A.L., Miller, R.H., Keeney, D.R., (Eds.). American Society of Agronomy Inc., Madison, WI, USA. pp. 403-430.

Pacheco-Villalobos, D., Diaz-Moreno, S.M., Schuren, A.V.D., Tamaki, T., Kang, Y. H., Gujas, B., Novak, O., Jaspert, N., Li, Z., Wolf, S., Oecking, C., Ljung, K., Bulone, V., Hardtke, C. S., 2016. The effects of high steady state auxin levels on root cell elongation in Brachypodium. The Plant Cell 28: 1009–1024.

Parthiban, P., Shijila Rani, A. S., Mahesh, V., Ambikapathy, V., 2016. Studies on biosynthesis of auxin in Rhizobium and their impact on growth of Vigna mungo L. Pharmaceutical and Biological Evaluation 3(3): 371-376.

Przygocka-Cyna, K., Grzebisz, W., 2018. Effect of biofertilizers on nutrient uptake by vegetables grown in a short cropping sequence. Journal of Elementology 23(3): 807-823.

Qureshi, M.A., Shahzad, H., Imran, Z., Mushtaq, M., Akhtar, N., Ali, M.A., Mujeeb, F., 2013. Potential of Rhizobium species to enhance growth and fodder yield of maize in the presence and absence of L-tryptophan. Journal of Animal and Plant Sciences 23(5): 1448-1454.

Rachel, B., Rokem, J. S., Gayathri, I., John, L., Dana, P., Emily, R., Sowmyalakshmi, S., Smith, D.L., 2018. Plant growth-promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1473.

Reddy, P.P., 2014. Potential role of PGPR in agriculture. In: Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Reddy, P.P. (Ed.). Springer, New Delhi. pp. 17-34.

Russell, A.D., Hugo, W.B., Ayliffo, G.A.J., 1982. Principles and practices of disinfection, preservation and sterilization. Black Wall Scientific, London.

Sarwar, M., Martens, D.A., Arshad, M., Frankenberger, W.T.Jr. 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil 147(2): 207-215.

Savci, S., 2012. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1: 287-292.

Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H., Martínez-Romero, E., 2002. Advances in Rhizobium research. Critical Review in Plant Sciences 21(4): 323-387.

Singh, J.S., Pandey, V.C., Singh, D.P., 2011. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment 140: 339-353.

Sinha, R.K., Valani, D., Chauhan, K., Agarwal, S., 2014. Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Journal of Agricultural Biotechnology and Sustainable Development 1: 50–64.

Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd Edition. McGraw-Hill Book International Co., Singapore. 666p.

Ullah, S., Qureshi, M. A., Ali, M.A., Mujeeb, F., Yasin, S., 2017a. Comparative potential of Rhizobium species for the growth promotion of sunflower (Helianthus annuus L.). Eurasian Journal of Soil Science 6(3): 189-196.

Ullah, S., Khan, M.Y., Asghar, H.N., Akhtar, M.J., Zahir, Z.A., 2017b. Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Annals of Microbiology 67(11): 739-749.

Vargas, L.K., Camila, G.V., Lisboa, B.B., Giongo, A., Beneduzi, A., Maria, L., Passaglia, P., 2017. Potential of Rhizobia as Plant Growth-Promoting Rhizobacteria. In: Microbes for Legume Improvement. Zaidi, A., Khan, M., Musarrat, J. (Eds.). Springer, Cham. pp. 153-174.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Boyce, A.N., 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules 21(5): 573.

Verbon, E.H., Liberman, L.M., 2016. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science 21(3): 218–229.

Vincent, J.M. 1970. A manual of practical study of root nodule bacteria. IBP Handbook No. 15. Blackwell Scientific Publications Oxford and Edinburgh, UK.

Zahir, Z. A., Yasin, H.M., Naveed, M., Anjum, M.A., Khalid, M., 2010b. L-Tryptophan application enhances the effectiveness of Rhizobium inoculation for improving growth and yield of Mungbean (Vigna radiata L. Wilczek). Pakistan Journal of Botany 42(3): 1771-1780.

Zahir, Z. A., Shah, M. K., Naveed, M., Akhter, M.J., 2010a. Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. Journal of Microbiology and Biotechnology 20(9): 1288– 1294.

Zahir, Z.A., Arshad, M., Frankenberger Jr, W.T., 2004. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy 81: 96-168.

Abstract

Soil Microbiologists have been concentrating on manipulation of rhizosphere microbes in cereals, but many researchers have reported that rhizobia can act as plant growth promoting rhizobacteria (PGPR). Rhizobium species impacted the crop ontogeny by root / endophytic colonization, producing phytohormones, efficient nutrient use and nutrient solubilization / mineralization. Field studies were performed at Soil Bacteriology Section and Soil Chemistry Section, Faisalabad to assess the comparative potential of Rhizobium species for promoting the growth, yield of wheat and rice. Auxin biosynthesis potential of isolates of Rhizobium species (mung (Vigna radiata), berseem (Trifolium alexandrinum), chickpea (Cicer arietinum), lentil (Lens culinaris) and peanut (Arachis hypogaea)) was determined and isolates of each species having higher values were used for field experiments. Assay for root / shoot elongation, root colonization in plates were carried out under controlled conditions. The rhizosphere soil of wheat and rice were assayed for the Indole Acedic Acid (IAA) content 15 and 30 days after germination / transplanting, respectively. Results revealed that significant increase was observed in the yield parameters of wheat and rice. Highest wheat grains were produced i.e., 4917 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4823 with Rhizobium sp of berseem (Br3) than control i.e., 4500 kg ha-1. Similarly, the maximum paddy yield i.e., 4667 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4625 Rhizobium sp of berseem (Br3) inoculation was obtained as compared to control i.e., 4208 kg ha-1. Other physical parameters of wheat and rice also showed positive response to inoculation and have elevated levels of IAA in the rhizosphere of inoculated treatments. Results clearly demonstrated that Rhizobium species increased the yield of rice and wheat. 

Keywords: Rhizobium species, IAA equivalents, PGPR, Interaction, wheat, rice.

References

Adesemoye, A.O., Kloepper, J.W., 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85: 1–12.

Akhtar, N., Arshad, I., Shakir, M.A., Qureshi, M.A., Sehrish, J., Ali, L., 2013. Co-inoculation with Rhizobium and Bacillus sp to improve the phosphorus availability and yield of wheat (Triticum aestivum L.). The Journal of Animal and Plant Science 23(1): 190-197.

Berger, L.R., Stamford, N.P., Santos, C.E.R.S., Freitas, A.D.S, Franco, L.O., Stamford, T.C.M., 2013. Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. Journal of Soil Science and Plant Nutrition 13(3), 592-603.

Bhat, M. A., Rasool, R., Ramzan, S., 2019. Plant Growth Promoting Rhizobacteria (PGPR) for sustainable and eco-Friendly Agriculture. Acta Scientific Agriculture 3(1): 23-25.

Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-total. In: Methods of Soil Analysis, 2nd edition. Page, A.L., Miller, R.H., Keeney, D.R. (Eds.). American Society of Agronomy Inc., Madison, Wisconsin, USA. pp. 595-624.

Datta, B., Chakrabartty, P.K., 2014. Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L.       3 Biotech 4: 391–401.

Dazzo, F.B., Yannim, Y.G., 2006. The natural Rhizobium-cereal crop association as an example of plant-bacterial interaction. In: Biological approaches to sustainable soil systems. Uphoff N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Sanginga, N., Thies, J. (Eds.). CRC Press, Boca Raton, pp 109–127.

Dobbelaere, S., Vanderleyden, J., Okon, Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Review in Plant Sciences 22(2): 107–149.

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L.L., Krishnamurthy, L., 2015. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5: 355–377.

Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., Patra, J.K., 2017. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206: 131-140.

Hardoim, P.R., van Overbeek, L.S., van Elsas, J.D., 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16(10): 463–471.

Hemissi, I., Mabrouk, Y., Abdi, N., Bouraoui, M., Saidi, M., Sifi, B., 2011. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. African Journal of Microbiology Research 5: 4080–4090.

Hossain, M.S., Mårtensson, A., 2008. Potential use of Rhizobium spp. to improve fitness of non-nitrogen-fixing plants. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 58(4): 352-358.

Hussain, M. I., Asghar, H. N. Arshad, M., Shahbaz, M., 2013. Screening of multi-traits rhizobacteria to improve maize growth under axenic conditions. The Journal of Animal and Plant Science 23(2):514-520.

Hussain, M.B., Mehboob, I., Zahir, Z.A., Naveed, M., Asghar, H.N., 2009. Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil and Environment 28(1): 49-55.

Hussain, M.B., Mahmood, S., Ahmed, N., Nawaz, H., 2018. Rhizobial inoculation for improving growth physiology, nutrition and yield of maize under drought stress conditions. Pakistan Journal of Botany 50(5): 1681-1689.

Hussain, M.B., Zahir, Z.A., Asghar, H. N., Asgher, N., 2014a. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? International Journal of Agriculture and Biology 16(1): 3‒13.

Hussain, M.B., Zahir, Z.A., Asghar, H.N., Mahmood, S., 2014b. Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Science Society of America Journal 78(2): 538-545.

Hussain, M.B., Zahir, Z.A., Asghar, H.N., Mubaraka, R., Naveed, M., 2016. Efficacy of rhizobia for improving photosynthesis, productivity and mineral nutrition of maize. CLEAN – Soil, Air, Water 44(11): 1564-1571.

Hussain, M.B., Zahir, Z.A., Mehboob, I., Mahmood, S., Ahmed, N., Tanveer-ul-Haq, Ahmad, I., Imran, M., 2019. Mesorhizobium ciceri-CR-39 inoculation to wheat for drought tolerance at critical growth stages. Pakistan Journal of Botany 51(1): 65-72.

Ibiene, A.A., Agogbua, J. U., Okonko, I.O., Nwachi, G. N., 2012. Plant growth promoting rhizobacteria (PGPR) as biofertilizer: Effect on growth of Lycopersicum esculentus. American Journal of Science 8(2): 318-324.

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., Lin, W., 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS One 14(5): e0217018.

Lupwayi, N.Z., Kennedy, A.C., Chirwa, R.M., 2011. Grain legume impacts on soil biological processes in sub-Saharan Africa. African Journal of Plant Science 5(1): 1-7.

Mehboob, I., Zahir, Z.A., Mahboob, A., Shahzad, S.M., Jawad, A., Arshad, M., 2008. Preliminary screening of Rhizobium isolates for improving growth of maize seedlings under axenic conditions. Soil and Environment 27: 64-71.

Mehboob, I., Zahir, Z.A., Arshad, M., Tanveer, A., Farooq, A.,, 2011. Growth promoting activities of different Rhizobium spp. in wheat. Pakistan Journal of Botany 43: 1643-1650.

Mukhongo, R.W., Tumuhairwe, J. B., Ebanyat, P., AbdelGadir, A. H., Thuita, M., Masso, C., 2017. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields. Frontiers in Plant Science 8:219.

Nagy, P.T., Pinté, T., 2015. Effects of Foliar Biofertilizer Sprays on Nutrient Uptake, Yield, and Quality Parameters of Blaufrankish (Vitis vinifera L.) Grapes. Communications in Soil Science and Plant Analysis 46(S1): 219-227.

Naher, U.A., Othman, R., Shamsuddin, H.J.Z., Saud, H.M., Ismail, M.R., 2009. Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. International Journal of Agriculture and Biology 11: 586-590.

Noreen, S., Ali, B., Hasnain, S., 2012. Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Annals of Microbiology 62: 411–417.

Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: Methods of soil analysis. Part 2 Chemical and microbiological properties. 2nd edition. Page, A.L., Miller, R.H., Keeney, D.R., (Eds.). American Society of Agronomy Inc., Madison, WI, USA. pp. 403-430.

Pacheco-Villalobos, D., Diaz-Moreno, S.M., Schuren, A.V.D., Tamaki, T., Kang, Y. H., Gujas, B., Novak, O., Jaspert, N., Li, Z., Wolf, S., Oecking, C., Ljung, K., Bulone, V., Hardtke, C. S., 2016. The effects of high steady state auxin levels on root cell elongation in Brachypodium. The Plant Cell 28: 1009–1024.

Parthiban, P., Shijila Rani, A. S., Mahesh, V., Ambikapathy, V., 2016. Studies on biosynthesis of auxin in Rhizobium and their impact on growth of Vigna mungo L. Pharmaceutical and Biological Evaluation 3(3): 371-376.

Przygocka-Cyna, K., Grzebisz, W., 2018. Effect of biofertilizers on nutrient uptake by vegetables grown in a short cropping sequence. Journal of Elementology 23(3): 807-823.

Qureshi, M.A., Shahzad, H., Imran, Z., Mushtaq, M., Akhtar, N., Ali, M.A., Mujeeb, F., 2013. Potential of Rhizobium species to enhance growth and fodder yield of maize in the presence and absence of L-tryptophan. Journal of Animal and Plant Sciences 23(5): 1448-1454.

Rachel, B., Rokem, J. S., Gayathri, I., John, L., Dana, P., Emily, R., Sowmyalakshmi, S., Smith, D.L., 2018. Plant growth-promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1473.

Reddy, P.P., 2014. Potential role of PGPR in agriculture. In: Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Reddy, P.P. (Ed.). Springer, New Delhi. pp. 17-34.

Russell, A.D., Hugo, W.B., Ayliffo, G.A.J., 1982. Principles and practices of disinfection, preservation and sterilization. Black Wall Scientific, London.

Sarwar, M., Martens, D.A., Arshad, M., Frankenberger, W.T.Jr. 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil 147(2): 207-215.

Savci, S., 2012. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1: 287-292.

Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H., Martínez-Romero, E., 2002. Advances in Rhizobium research. Critical Review in Plant Sciences 21(4): 323-387.

Singh, J.S., Pandey, V.C., Singh, D.P., 2011. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment 140: 339-353.

Sinha, R.K., Valani, D., Chauhan, K., Agarwal, S., 2014. Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Journal of Agricultural Biotechnology and Sustainable Development 1: 50–64.

Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd Edition. McGraw-Hill Book International Co., Singapore. 666p.

Ullah, S., Qureshi, M. A., Ali, M.A., Mujeeb, F., Yasin, S., 2017a. Comparative potential of Rhizobium species for the growth promotion of sunflower (Helianthus annuus L.). Eurasian Journal of Soil Science 6(3): 189-196.

Ullah, S., Khan, M.Y., Asghar, H.N., Akhtar, M.J., Zahir, Z.A., 2017b. Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Annals of Microbiology 67(11): 739-749.

Vargas, L.K., Camila, G.V., Lisboa, B.B., Giongo, A., Beneduzi, A., Maria, L., Passaglia, P., 2017. Potential of Rhizobia as Plant Growth-Promoting Rhizobacteria. In: Microbes for Legume Improvement. Zaidi, A., Khan, M., Musarrat, J. (Eds.). Springer, Cham. pp. 153-174.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Boyce, A.N., 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules 21(5): 573.

Verbon, E.H., Liberman, L.M., 2016. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science 21(3): 218–229.

Vincent, J.M. 1970. A manual of practical study of root nodule bacteria. IBP Handbook No. 15. Blackwell Scientific Publications Oxford and Edinburgh, UK.

Zahir, Z. A., Yasin, H.M., Naveed, M., Anjum, M.A., Khalid, M., 2010b. L-Tryptophan application enhances the effectiveness of Rhizobium inoculation for improving growth and yield of Mungbean (Vigna radiata L. Wilczek). Pakistan Journal of Botany 42(3): 1771-1780.

Zahir, Z. A., Shah, M. K., Naveed, M., Akhter, M.J., 2010a. Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. Journal of Microbiology and Biotechnology 20(9): 1288– 1294.

Zahir, Z.A., Arshad, M., Frankenberger Jr, W.T., 2004. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy 81: 96-168.



Eurasian Journal of Soil Science