Eurasian Journal of Soil Science

Volume 10, Issue 4, Sep 2021, Pages 332 - 342
DOI: 10.18393/ejss.972062
Stable URL: http://ejss.fess.org/10.18393/ejss.972062
Copyright © 2021 The authors and Federation of Eurasian Soil Science Societies



Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace

X

Article first published online: 15 Jul 2021 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 51 | 387

Aboutayeb,R., El-mrini,S., Zouhri,A., Idrissi,O., Azim ,K., 2021. Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace. Eurasian J Soil Sci 10(4):332 - 342. DOI : 10.18393/ejss.972062
Aboutayeb,R.,El-mrini,S.Zouhri,A.Idrissi,O.,& Azim ,K. Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace Eurasian Journal of Soil Science, 10(4):332 - 342. DOI : 10.18393/ejss.972062
Aboutayeb,R.,El-mrini,S.Zouhri,A.Idrissi,O., and ,Azim ,K."Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace" Eurasian Journal of Soil Science, 10.4 (2021):332 - 342. DOI : 10.18393/ejss.972062
Aboutayeb,R.,El-mrini,S.Zouhri,A.Idrissi,O., and ,Azim ,K. "Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace" Eurasian Journal of Soil Science,10(Sep 2021):332 - 342 DOI : 10.18393/ejss.972062
R,Aboutayeb.S,El-mrini.A,Zouhri.O,Idrissi.K,Azim "Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace" Eurasian J. Soil Sci, vol.10, no.4, pp.332 - 342 (Sep 2021), DOI : 10.18393/ejss.972062
Aboutayeb,Rachid ;El-mrini,Soufiane ;Zouhri,Abdeljalil ;Idrissi,Omar ;Azim ,Khalid Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace. Eurasian Journal of Soil Science, (2021),10.4:332 - 342. DOI : 10.18393/ejss.972062

How to cite

Aboutayeb, R., El-mrini, S., Zouhri, A., Idrissi, O., Azim , K., 2021. Hygienization assessment during heap co-composting of Turkey manure and olive mill pomace. Eurasian J. Soil Sci. 10(4): 332 - 342. DOI : 10.18393/ejss.972062

Author information

Rachid Aboutayeb , National Institute of Agricultural Research (INRA), Regional Center, Settat, Morocco Settat, Morocco
Soufiane El-mrini , Hassan 1st University, College of Sciences and Techniques, Settat, Morocco
Abdeljalil Zouhri , Hassan 1st University, College of Sciences and Techniques, Settat, Morocco
Omar Idrissi , National Institute of Agricultural Research (INRA), Regional Center, Settat, Morocco
Khalid Azim , National Institute of Agricultural Research (INRA), Regional Center of Agadir, Morocco

Publication information

Article first published online : 15 Jul 2021
Manuscript Accepted : 09 Jul 2021
Manuscript Received: 10 Feb 2021
DOI: 10.18393/ejss.972062
Stable URL: http://ejss.fesss.org/10.18393/ejss.972062

Abstract

This study aimed to investigate the co-composting time effectiveness as well as the effect of the initial Carbon/Nitrogen ratio (C/N)i variation on the hygienization of olive pomace and turkey manure. Six different heaps, at 3 levels of (C/N)i ratios: 20, 22 and 28, were installed and monitored during 6 months and assessed at three steps: At the beginning, the end of thermophilic-phase and the end of curing-phase. The microbial monitoring concerned 5 microbial pathogens contents, used as hygiene microbial indicators, namely: Sulphite-Reducing Anaerobes (SRA), Escherichia Coli (E. Coli), Total Aerobic Mesophilic Flora (TAMF), Staphylococci, and Salmonella spp. Initially, the mixtures showed high TAMF and Staphylococci loads. Meanwhile, SRA and E. coli populations were relatively low and Salmonella spp. was not detected. The microbial assessment showed a significant effect of composting time on the reduction of pathogens load, except for SRA where its population has increased significantly, while the (C/N)i had a non-significant effect on pathogen content of the end-product. The final values expressed as colony-forming unit per gram (CFU g-1), were as follow: Sulfite-reducing Anaerobes (≤3.1 x 103 CFU g-1), E. Coli germ used as an indicator of faecal contamination (<4 x 101 CFU g-1), Total aerobic mesophilic flora (≤1.4 x 106 CFU g-1), Staphylococci (<10 CFU g-1) and non-detection of Salmonella spp. Finally, the seed germination tests were carried out on three different seeds: lentils (Lens culinaris), barley (Hordeum vulgare) and durum wheat (Triticum turgidum) showed that the use of the compost extract is favourable for seed germination with germination index (GI%) values exceeding 85%. These results confirm the non-phytotoxicity and maturity of the composts.

Keywords

Sanitation, pathogens, poultry manure, microbial hazard, germination index, olive by-products

Corresponding author

References

Aboutayeb, R., 2015. Valorisation des fumiers de volailles de chair: Compostage, épandage et étude des effets des fumiers de volailles et leurs composts sur les propriétés physicochimiques du sol sous cultures de maïs fourrager et de menthe verte. Thèse de doctorat, Université Hassan I, Faculté des sciences et techniques, Settat, Maroc. [in French]

Aboutayeb, R., Elgharous, M., Abail, Z., Elhari, M., Koulali, Y., 2013. Stabilization and sanitation of chicken litter by heap composting. International Journal of Engineering Research & Technology (IJERT) 2(9): 529-534.

Aboutayeb, R., El Yousfi, B., El Gharras, O., 2020. Impact of No-Till on physicochemical properties of Vertisols in Chaouia region of Morocco. Eurasian Journal of Soil Science 9(2): 119-125.

Aira, M., Gómez-Brandón, M., González-Porto, P., Domínguez, J., 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technology 102(20): 9633–9637.

Ait Baddi, G., Alburquerque, J.A., Gonzálvez, J., Cegarra, J., Hafidi, M., 2004. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation 54 (1): 39-44.

Albrecht, R., 2007. Co-composting of sewage treatment plant sludge and green waste: new methodology for monitoring organic matter transformations. PhD Thesis. University of Law, Economics and Sciences-Aix-Marseille III, France. 189p.

Assess, N., Farhat, W., Hamdi, M., Bouallagui, H., 2019. Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Safety and Environmental Protection 124: 128-136.

Azim, K., Faissal, Y., Soudi, B., Perissol, C., Roussos, S., Alami, I.T., 2018. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios. Environmental Science and Pollution Research 25: 3408–3422.

Azim, K., Komenane, S., Soudi,   B., 2017. Agro-environmental assessment of composting plants in Southwestern of Morocco (Souss-Massa Region). International Journal of Recycling of Organic Waste in Agriculture 6: 107–115.

Bargougui, L., Guergueb, Z., Chaieb, M., Mekki, A., 2020. Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste and Biomass Valorization 11 : 6235–6247.

Beffa, T., Blanc, M., Marilley, L., Lott, Fisher, J., Lyon, P.F., 1996. Taxonomic and metabolic microbial diversity during composting. In: The Sciences of Composting. de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.). Blackie Academic and Professional, Glasgow, UK, pp. 149–161.

Böhnel, H., Lube, K., 2000. Clostridium botulinum and Bio-compost. A contribution to the analysis of potential health hazards caused by bio-waste recycling. Journal of Veterinary Medicine, Series B 47(10): 785–795.

Brinton Jr, W.F., Droffner, M.W., 1994. Microbial approaches to characterization of composting process. Compost Science & Utilization 2(3): 12–17.

Bustamante, M.A., Moral, R., Paredes, C., Vargas-García, M.C., Suárez-Estrella, F., Moreno, J., 2008. Evolution of the pathogen content during co-composting of winery and distillery wastes. Bioresource Technology 99(15): 7299-7306.

Chen, Z., Jiang, X., 2014. Microbial safety of chicken litter or chicken litter-based organic fertilizers: A review. Agriculture 4: 1-29.

Chowdhury, A.K.M.M.B., Akratos, C.S., Vayenas, D.V., Pavlou, S., 2013. Olive mill waste composting: a review. International Biodeterioration & Biodegradation 85: 108-119.

de Bertoldi, M.D., Vallini, G., Pera, A., 1983. The biology of composting: a review. Waste Management & Research 1(2): 157–176.

de Mendonça Costa, M.S.S., Lorin, H.E.F., de Mendonça Costa, L.A., Cestonaro, T., Pereira, D.C., Bernardi, F.H., 2016. Performance of four stabilization bioprocesses of beef cattle feedlot manure. Journal of Environmental Management 181 : 443–448.

Déportes, I., Benoit-Guyod, J.L., Zmirou, D., Bouvier, M.C., 1998. Microbial disinfection capacity of municipal solid waste (MSW) composting. Journal of Applied Microbiology 85(2): 238–246.

Droffner, M.L., Brinton, W.F., Evans, E., 1995. Evidence for the prominence of well characterized mesophilic bacteria in thermophilic (50–70°C) composting environments. Biomass and Bioenergy 8(3): 191-195.

El Fels, L., Ouhdouch, Y., Hafidi, M., 2015. Use of the co-composting time extract agar to evaluate the microbial community changes during the co-composting of activated sludge and date palm waste. International Journal of Recycling of Organic Waste in Agriculture 4: 95–103.

El Fels, L., Zamama, M., El Asli, A., Hafidi, M., 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation 87: 128-137.

Elving, J., Ottoson, J., Vinnerås, B., Albihn, A., 2010. Growth potential of faecal bacteria in simulated psychrophilic/ mesophilic zones during composting of organic waste. Journal of Applied Microbiology 108(6): 1974–1981.

Erickson, M.C., Liao, J., Boyhan, G., Smith, C., Ma, L., Jiang, X., Doyle, M.P., 2010. Fate of manure-borne pathogen surrogates in static composting piles of chicken litter and peanut hulls. Bioresource Technology 101: 1014–1020.

Felipo, M.T., 1996. Compost as a source of organic matter in Mediterranean soils. In: The science of composting. De Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.). Blackie Academic and Professional, Glasgow. pp. 403-412.

Francou, C., Poitrenaud, M., Houot, S., 2005. Stabilization of organic matter during composting: Influence of process and feedstocks. Compost Science & Utilization 13(1): 72-83.

Gale, P., 2004. Risks to farm animals from pathogens in composted catering waste containing meat. Veterinary Record 155(3): 77-82.

Gerba, C.P., Huber, M.S., Naranjo, J., Rose, J.B., Bradford, S., 1995. Occurrence of enteric pathogens in composted domestic solid waste containing disposable diapers. Waste Management & Research 13(4): 315–324.

Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., Ammar, E., 2009. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials 161(2): 1131–1139.

Hachicha, S., Chtourou, M., Medhioub, K., Ammar, E, 2006. Compost of poultry manure and olive mill wastes as an alternative fertilizer. Agronomy for Sustainable Development 26(2): 135–142.

Harrison, E.Z., 2004. Hygienic Implications of Small-Scale Composting in New York State. Final Report of the Cold Compost Project. Cornell Waste Management Institute, Ithaca, NY. Available at [access date: 10.02.2021]:  https://ecommons.cornell.edu/bitstream/handle/1813/40227/coldcompost.pdf%3Bjsessionid%3D2695D4A7E7107BF98B9CA6CC353BAAEE?sequence%3D2

Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A., 2001. Microbial characterization during composting of municipal solid waste. Bioresource Technology 80 (3): 217–225.

Heinonen-Tanski, H., Mohaibes, M., Karinen, P., Koivunen, J., 2006. Methods to reduce pathogen microorganisms in manure. Livestock Science 102(3): 248-255.

Hess, T.F., Grdzelishvili, I., Sheng, H., Hovde, C.J., 2004. Heat inactivation of E. coli during manure composting. Compost Science & Utilization 12(4): 314–322.

Huang, G.F., Wu, Q.T., Wong, J.W.C., Nagar, B.B., 2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology 97(15): 1834–1842.

Islam, M., Doyle, M.P., Phatak, S.C., Millner, P., Jiang, X.P., 2005. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiology 22(1): 63–70.

ISO 15213:2003. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of sulfite-reducing bacteria growing under anaerobic conditions. Available at [access date: 10.02.2021]: https://www.iso.org/standard/26852.html

ISO 16649-2:2001. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. Available at [access date: 10.02.2021]:  https://www.iso.org/standard/29824.html

ISO 4833-1:2013. Microbiology of the food chain - Horizontal method for the enumeration of microorganisms - Part 1: Colony count at 30°C by the pour plate technique. Available at [access date: 10.02.2021]: https://www.iso.org/standard/53728.html

ISO 6579-1:2017/AMD 1:2020. Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. — Amendment 1: Broader range of incubation temperatures, amendment to the status of Annex D, and correction of the composition of MSRV and SC. Available at [access date: 10.02.2021]: https://www.iso.org/standard/76671.html

ISO 6888-2:1999. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 2: Technique using rabbit plasma fibrinogen agar medium. Available at [access date: 10.02.2021]: https://www.iso.org/standard/25571.html

Jamieson, R.C., Gordon, R.J., Sharples, K.E., Stratton, G.W., Madani, A., 2002. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Canadian Biosystems Engineering 44: 11–19.

Johannessen, G.S., James, C.E., Allison, H.E., Smith, D.L., Saunders, J.R., McCarthy, A.J., 2005. Survival of a Shiga toxin-encoding bacteriophage in a compost model. FEMS Microbiology Letters 245(2): 369-375.

Jones, P., Martin, M., 2003. A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. Research report. Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK. ISBN: 1-84405-063-7.

Juneja, V.K., Marmer, B.S., 1998. Thermal inactivation of Clostridium perfringens vegetative cells in ground beef and turkey as affected by sodium pyrophosphate. Food Microbiology 15: 281–287.

Juneja, V.K., Novak, J.S., Huang, L., Eblen, B.S., 2003. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14: 163–168.

Kalamdhad, A.S., Kazmi, A.A., 2009. Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere 74(10): 1327-1334.

Lamprell, H., 2003. Production des entérotoxines dans les fromages en fonction de la diversité phénotypique et génétique des souches de Staphylococcus aureus. PhD Thesis .Université de Bourgogne France. 168p. [in French].

Larney, F.J., Yanke, L.J., Miller, J.J., McAllister, T.A., 2003. Fate of coliform bacteria in composted beef cattle feedlot manure. Journal of Environmental Quality 32(4): 1508-1515.

Le Minor, L., 1984. Escherichia coli. In: Bactériologie Médicale. Le Minor, L., Véron, M. (Eds.). Flammarion Médecine Sciences, Paris, pp. 240–353. [in French].

Li, F., Cheng, S., Yu, H., Yang, D., 2016. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. Journal of Cleaner Production 126: 451–460.

Loubinoux J., 2001. Les bactéries sulfato-réductrices humaines: caractérisation et pouvoir pathogène. Médecine humaine et pathologie. PhD Thesis. Université Henri Poincaré - Nancy 1. Français. [in French].

Lung, A.J., Lin, C.M., Kim, J.M., Marshall, M.R., Nordstedt, R., Thompson, N.P., Wei, C.I., 2001. Destruction of Escherichia coli O157: H7 and Salmonella enteritidis in cow manure composting. Journal of Food Protection 64(9): 1309-1314.

Mainoo, N.O.K., Barrington, S., Whalen, J.K., Sampedro, L., 2009. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technology 100(23): 5872–5875.

Manu, M.K., Kumar, R., Garg, A., 2019. Decentralized composting of household wet biodegradable waste in plastic drums: Effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production 226: 233-241.

Millner, P., Ingram, D., Mulbry, W., Arikan, O.A., 2014. Pathogen reduction in minimally managed composting of bovine manure. Waste Management 34(11): 1992-1999.

Millner, P.D., Olenchock, S.A., Epstein, E., Rylander, R., Haines, M.D., Walker, J., Ooi, B. L., Horne, E., Maritato, M., 1994. Bioaerosols associated with compost facilities. Compost Science & Utilization 2(4): 6–57.

Pandey, P.K., Cao, W., Biswas, S., Vaddella, V., 2016. A new closed loop heating system for composting of green and food wastes. Journal of Cleaner Production 133: 1252–1259.

Payment, P., 1999. Poor efficacy of residual chlorine disinfectant in drinking water to inactive waterborne pathogens in distribution systems. Canadian Journal of Microbiology 45(8): 709–715.

Pourcher, A.M., Morand, P., Picard-Bonnaud, F., Billaudel, S., Monpoeho, S., Federighi, M., Ferré, V., Moguedet, G., 2005. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture. Journal of Applied Microbiology 99: 528–539.

Pujol, A., 2012. Modélisation du procédé de compostage-Impact du phénomène de séchage. PhD Thesis. Institut National Polytechnique de Toulouse. 268p. [in French].

Ramli, H., Daoud, S., Harouni, M.C., Elame, F., Azim, K., 2020. Effect of organic amendments on soil fertility of organic potato crop. Acta Horticulturae 1286: 155-162.

Roig, A., Cayuela, M.L., Sánchez-Monedero, M.A., 2006. An overview on olive mill wastes and their valorisation methods. Waste Management 26(9): 960-969.

Ros, M., García, C., Hernández, T., 2006. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. Waste Management 26(10): 1108-1118.

Rouas, S., Rahmani, M., El Antari, A., Baamal, L., Eddakir, K., 2015. Impact des conditions d'hygiène et de fabrication sur la dégradation de la qualité potentielle des huiles d'olive produites dans la zone de Moulay Driss Zerhoun. Revue Marocaine des Sciences Agronomiques et Vétérinaires 3(1): 45-52

Semenov, A.V., Overbeek, L.V., Termoshuizen, A.J., van Bruggen, AH.C., 2011. Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria–Bertani broth, farm-yard manure and slurry. Journal of Environmental Management 92(3): 780-787.

Sidhu, J., Gibbs, R.A., Ho, G.E., Unkovich, I., 2001. The role of indigenous microorganisms in suppression of salmonella regrowth in composted biosolids. Water Research 35(4): 913-920.

Soobhany, N., Mohee, R., Garg, V.K., 2017. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Management 64 : 51–62.

Toledo, M., Gutiérrez, M.C., Peña, A., Siles, J.A., Martín, M.A., 2020. Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process Safety and Environmental Protection 139: 362-370.

Tortosa, G., Torralbo, F., Maza-Márquez, P., Aranda, E., Calvo, C., González-Murua, C., Bedmar, E.J., 2019. Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste (‘‘alperujo”) composting, Bioresource Technology 295: 122267.

Vernozy-Rozand, C., Mazuy-Chucradeut, C., Bavai, C., Richard, Y., 2004. Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Letters in Applied Microbiology 39(6): 490–494.

Vernozy-Rozand, C., Roze, S., 2003. Bilan des connaissances relatives aux Escherichia coliproducteurs de Shiga-toxines (STEC). French Food Safety Agency, Maisons-Alfort, France. 220p. Available at [access date: 10.02.2021]: https://www.anses.fr/fr/system/files/MIC-Ra-STEC.pdf  [in French].

Yanko, W.A., Walker, A.S., Jackson, J.L., Libao, L.L., Garcia, A.L., 1995. Enumerating Salmonella in biosolids for compliance with pathogen regulations. Water Environment Research 67(3): 364–368.

Zhao, T., Doyle, M.P., Shere, J., Garber, L., 1995. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Applied and Environmental Microbiology 61(4): 1290–1293.

Zucconi, F., Forte, M., Monaco, M., De Bertoldi, M., 1981. Biological evaluation of compost maturity. Biocycle 22 : 27–29.

Abstract

This study aimed to investigate the co-composting time effectiveness as well as the effect of the initial Carbon/Nitrogen ratio (C/N)i variation on the hygienization of olive pomace and turkey manure. Six different heaps, at 3 levels of (C/N)i ratios: 20, 22 and 28, were installed and monitored during 6 months and assessed at three steps: At the beginning, the end of thermophilic-phase and the end of curing-phase. The microbial monitoring concerned 5 microbial pathogens contents, used as hygiene microbial indicators, namely: Sulphite-Reducing Anaerobes (SRA), Escherichia Coli (E. Coli), Total Aerobic Mesophilic Flora (TAMF), Staphylococci, and  Salmonella spp. Initially, the mixtures showed high TAMF and Staphylococci loads. Meanwhile, SRA and E. coli populations were relatively low and Salmonella spp. was not detected. The microbial assessment showed a significant effect of composting time on the reduction of pathogens load, except for SRA where its population has increased significantly, while the (C/N)i had a non-significant effect on pathogen content of the end-product. The final values expressed as colony-forming unit per gram (CFU g-1), were as follow: Sulfite-reducing Anaerobes (≤3.1 x 103 CFU g-1), E. Coli germ used as an indicator of faecal contamination (<4 x 101 CFU g-1), Total aerobic mesophilic flora (≤1.4 x 106 CFU g-1), Staphylococci (<10 CFU g-1) and non-detection of Salmonella spp. Finally, the seed germination tests were carried out on three different seeds: lentils (Lens culinaris), barley (Hordeum vulgare) and durum wheat (Triticum turgidum) showed that the use of the compost extract is favourable for seed germination with germination index (GI%) values exceeding 85%. These results confirm the non-phytotoxicity and maturity of the composts.

Keywords: Sanitation, pathogens, poultry manure, microbial hazard, germination index, olive by-products.

References

Aboutayeb, R., 2015. Valorisation des fumiers de volailles de chair: Compostage, épandage et étude des effets des fumiers de volailles et leurs composts sur les propriétés physicochimiques du sol sous cultures de maïs fourrager et de menthe verte. Thèse de doctorat, Université Hassan I, Faculté des sciences et techniques, Settat, Maroc. [in French]

Aboutayeb, R., Elgharous, M., Abail, Z., Elhari, M., Koulali, Y., 2013. Stabilization and sanitation of chicken litter by heap composting. International Journal of Engineering Research & Technology (IJERT) 2(9): 529-534.

Aboutayeb, R., El Yousfi, B., El Gharras, O., 2020. Impact of No-Till on physicochemical properties of Vertisols in Chaouia region of Morocco. Eurasian Journal of Soil Science 9(2): 119-125.

Aira, M., Gómez-Brandón, M., González-Porto, P., Domínguez, J., 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technology 102(20): 9633–9637.

Ait Baddi, G., Alburquerque, J.A., Gonzálvez, J., Cegarra, J., Hafidi, M., 2004. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation 54 (1): 39-44.

Albrecht, R., 2007. Co-composting of sewage treatment plant sludge and green waste: new methodology for monitoring organic matter transformations. PhD Thesis. University of Law, Economics and Sciences-Aix-Marseille III, France. 189p.

Assess, N., Farhat, W., Hamdi, M., Bouallagui, H., 2019. Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Safety and Environmental Protection 124: 128-136.

Azim, K., Faissal, Y., Soudi, B., Perissol, C., Roussos, S., Alami, I.T., 2018. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios. Environmental Science and Pollution Research 25: 3408–3422.

Azim, K., Komenane, S., Soudi,   B., 2017. Agro-environmental assessment of composting plants in Southwestern of Morocco (Souss-Massa Region). International Journal of Recycling of Organic Waste in Agriculture 6: 107–115.

Bargougui, L., Guergueb, Z., Chaieb, M., Mekki, A., 2020. Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste and Biomass Valorization 11 : 6235–6247.

Beffa, T., Blanc, M., Marilley, L., Lott, Fisher, J., Lyon, P.F., 1996. Taxonomic and metabolic microbial diversity during composting. In: The Sciences of Composting. de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.). Blackie Academic and Professional, Glasgow, UK, pp. 149–161.

Böhnel, H., Lube, K., 2000. Clostridium botulinum and Bio-compost. A contribution to the analysis of potential health hazards caused by bio-waste recycling. Journal of Veterinary Medicine, Series B 47(10): 785–795.

Brinton Jr, W.F., Droffner, M.W., 1994. Microbial approaches to characterization of composting process. Compost Science & Utilization 2(3): 12–17.

Bustamante, M.A., Moral, R., Paredes, C., Vargas-García, M.C., Suárez-Estrella, F., Moreno, J., 2008. Evolution of the pathogen content during co-composting of winery and distillery wastes. Bioresource Technology 99(15): 7299-7306.

Chen, Z., Jiang, X., 2014. Microbial safety of chicken litter or chicken litter-based organic fertilizers: A review. Agriculture 4: 1-29.

Chowdhury, A.K.M.M.B., Akratos, C.S., Vayenas, D.V., Pavlou, S., 2013. Olive mill waste composting: a review. International Biodeterioration & Biodegradation 85: 108-119.

de Bertoldi, M.D., Vallini, G., Pera, A., 1983. The biology of composting: a review. Waste Management & Research 1(2): 157–176.

de Mendonça Costa, M.S.S., Lorin, H.E.F., de Mendonça Costa, L.A., Cestonaro, T., Pereira, D.C., Bernardi, F.H., 2016. Performance of four stabilization bioprocesses of beef cattle feedlot manure. Journal of Environmental Management 181 : 443–448.

Déportes, I., Benoit-Guyod, J.L., Zmirou, D., Bouvier, M.C., 1998. Microbial disinfection capacity of municipal solid waste (MSW) composting. Journal of Applied Microbiology 85(2): 238–246.

Droffner, M.L., Brinton, W.F., Evans, E., 1995. Evidence for the prominence of well characterized mesophilic bacteria in thermophilic (50–70°C) composting environments. Biomass and Bioenergy 8(3): 191-195.

El Fels, L., Ouhdouch, Y., Hafidi, M., 2015. Use of the co-composting time extract agar to evaluate the microbial community changes during the co-composting of activated sludge and date palm waste. International Journal of Recycling of Organic Waste in Agriculture 4: 95–103.

El Fels, L., Zamama, M., El Asli, A., Hafidi, M., 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation 87: 128-137.

Elving, J., Ottoson, J., Vinnerås, B., Albihn, A., 2010. Growth potential of faecal bacteria in simulated psychrophilic/ mesophilic zones during composting of organic waste. Journal of Applied Microbiology 108(6): 1974–1981.

Erickson, M.C., Liao, J., Boyhan, G., Smith, C., Ma, L., Jiang, X., Doyle, M.P., 2010. Fate of manure-borne pathogen surrogates in static composting piles of chicken litter and peanut hulls. Bioresource Technology 101: 1014–1020.

Felipo, M.T., 1996. Compost as a source of organic matter in Mediterranean soils. In: The science of composting. De Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.). Blackie Academic and Professional, Glasgow. pp. 403-412.

Francou, C., Poitrenaud, M., Houot, S., 2005. Stabilization of organic matter during composting: Influence of process and feedstocks. Compost Science & Utilization 13(1): 72-83.

Gale, P., 2004. Risks to farm animals from pathogens in composted catering waste containing meat. Veterinary Record 155(3): 77-82.

Gerba, C.P., Huber, M.S., Naranjo, J., Rose, J.B., Bradford, S., 1995. Occurrence of enteric pathogens in composted domestic solid waste containing disposable diapers. Waste Management & Research 13(4): 315–324.

Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., Ammar, E., 2009. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials 161(2): 1131–1139.

Hachicha, S., Chtourou, M., Medhioub, K., Ammar, E, 2006. Compost of poultry manure and olive mill wastes as an alternative fertilizer. Agronomy for Sustainable Development 26(2): 135–142.

Harrison, E.Z., 2004. Hygienic Implications of Small-Scale Composting in New York State. Final Report of the Cold Compost Project. Cornell Waste Management Institute, Ithaca, NY. Available at [access date: 10.02.2021]:  https://ecommons.cornell.edu/bitstream/handle/1813/40227/coldcompost.pdf%3Bjsessionid%3D2695D4A7E7107BF98B9CA6CC353BAAEE?sequence%3D2

Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A., 2001. Microbial characterization during composting of municipal solid waste. Bioresource Technology 80 (3): 217–225.

Heinonen-Tanski, H., Mohaibes, M., Karinen, P., Koivunen, J., 2006. Methods to reduce pathogen microorganisms in manure. Livestock Science 102(3): 248-255.

Hess, T.F., Grdzelishvili, I., Sheng, H., Hovde, C.J., 2004. Heat inactivation of E. coli during manure composting. Compost Science & Utilization 12(4): 314–322.

Huang, G.F., Wu, Q.T., Wong, J.W.C., Nagar, B.B., 2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology 97(15): 1834–1842.

Islam, M., Doyle, M.P., Phatak, S.C., Millner, P., Jiang, X.P., 2005. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiology 22(1): 63–70.

ISO 15213:2003. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of sulfite-reducing bacteria growing under anaerobic conditions. Available at [access date: 10.02.2021]: https://www.iso.org/standard/26852.html

ISO 16649-2:2001. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. Available at [access date: 10.02.2021]:  https://www.iso.org/standard/29824.html

ISO 4833-1:2013. Microbiology of the food chain - Horizontal method for the enumeration of microorganisms - Part 1: Colony count at 30°C by the pour plate technique. Available at [access date: 10.02.2021]: https://www.iso.org/standard/53728.html

ISO 6579-1:2017/AMD 1:2020. Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. — Amendment 1: Broader range of incubation temperatures, amendment to the status of Annex D, and correction of the composition of MSRV and SC. Available at [access date: 10.02.2021]: https://www.iso.org/standard/76671.html

ISO 6888-2:1999. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 2: Technique using rabbit plasma fibrinogen agar medium. Available at [access date: 10.02.2021]: https://www.iso.org/standard/25571.html

Jamieson, R.C., Gordon, R.J., Sharples, K.E., Stratton, G.W., Madani, A., 2002. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Canadian Biosystems Engineering 44: 11–19.

Johannessen, G.S., James, C.E., Allison, H.E., Smith, D.L., Saunders, J.R., McCarthy, A.J., 2005. Survival of a Shiga toxin-encoding bacteriophage in a compost model. FEMS Microbiology Letters 245(2): 369-375.

Jones, P., Martin, M., 2003. A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. Research report. Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK. ISBN: 1-84405-063-7.

Juneja, V.K., Marmer, B.S., 1998. Thermal inactivation of Clostridium perfringens vegetative cells in ground beef and turkey as affected by sodium pyrophosphate. Food Microbiology 15: 281–287.

Juneja, V.K., Novak, J.S., Huang, L., Eblen, B.S., 2003. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14: 163–168.

Kalamdhad, A.S., Kazmi, A.A., 2009. Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere 74(10): 1327-1334.

Lamprell, H., 2003. Production des entérotoxines dans les fromages en fonction de la diversité phénotypique et génétique des souches de Staphylococcus aureus. PhD Thesis .Université de Bourgogne France. 168p. [in French].

Larney, F.J., Yanke, L.J., Miller, J.J., McAllister, T.A., 2003. Fate of coliform bacteria in composted beef cattle feedlot manure. Journal of Environmental Quality 32(4): 1508-1515.

Le Minor, L., 1984. Escherichia coli. In: Bactériologie Médicale. Le Minor, L., Véron, M. (Eds.). Flammarion Médecine Sciences, Paris, pp. 240–353. [in French].

Li, F., Cheng, S., Yu, H., Yang, D., 2016. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. Journal of Cleaner Production 126: 451–460.

Loubinoux J., 2001. Les bactéries sulfato-réductrices humaines: caractérisation et pouvoir pathogène. Médecine humaine et pathologie. PhD Thesis. Université Henri Poincaré - Nancy 1. Français. [in French].

Lung, A.J., Lin, C.M., Kim, J.M., Marshall, M.R., Nordstedt, R., Thompson, N.P., Wei, C.I., 2001. Destruction of Escherichia coli O157: H7 and Salmonella enteritidis in cow manure composting. Journal of Food Protection 64(9): 1309-1314.

Mainoo, N.O.K., Barrington, S., Whalen, J.K., Sampedro, L., 2009. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technology 100(23): 5872–5875.

Manu, M.K., Kumar, R., Garg, A., 2019. Decentralized composting of household wet biodegradable waste in plastic drums: Effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production 226: 233-241.

Millner, P., Ingram, D., Mulbry, W., Arikan, O.A., 2014. Pathogen reduction in minimally managed composting of bovine manure. Waste Management 34(11): 1992-1999.

Millner, P.D., Olenchock, S.A., Epstein, E., Rylander, R., Haines, M.D., Walker, J., Ooi, B. L., Horne, E., Maritato, M., 1994. Bioaerosols associated with compost facilities. Compost Science & Utilization 2(4): 6–57.

Pandey, P.K., Cao, W., Biswas, S., Vaddella, V., 2016. A new closed loop heating system for composting of green and food wastes. Journal of Cleaner Production 133: 1252–1259.

Payment, P., 1999. Poor efficacy of residual chlorine disinfectant in drinking water to inactive waterborne pathogens in distribution systems. Canadian Journal of Microbiology 45(8): 709–715.

Pourcher, A.M., Morand, P., Picard-Bonnaud, F., Billaudel, S., Monpoeho, S., Federighi, M., Ferré, V., Moguedet, G., 2005. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture. Journal of Applied Microbiology 99: 528–539.

Pujol, A., 2012. Modélisation du procédé de compostage-Impact du phénomène de séchage. PhD Thesis. Institut National Polytechnique de Toulouse. 268p. [in French].

Ramli, H., Daoud, S., Harouni, M.C., Elame, F., Azim, K., 2020. Effect of organic amendments on soil fertility of organic potato crop. Acta Horticulturae 1286: 155-162.

Roig, A., Cayuela, M.L., Sánchez-Monedero, M.A., 2006. An overview on olive mill wastes and their valorisation methods. Waste Management 26(9): 960-969.

Ros, M., García, C., Hernández, T., 2006. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. Waste Management 26(10): 1108-1118.

Rouas, S., Rahmani, M., El Antari, A., Baamal, L., Eddakir, K., 2015. Impact des conditions d'hygiène et de fabrication sur la dégradation de la qualité potentielle des huiles d'olive produites dans la zone de Moulay Driss Zerhoun. Revue Marocaine des Sciences Agronomiques et Vétérinaires 3(1): 45-52

Semenov, A.V., Overbeek, L.V., Termoshuizen, A.J., van Bruggen, AH.C., 2011. Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria–Bertani broth, farm-yard manure and slurry. Journal of Environmental Management 92(3): 780-787.

Sidhu, J., Gibbs, R.A., Ho, G.E., Unkovich, I., 2001. The role of indigenous microorganisms in suppression of salmonella regrowth in composted biosolids. Water Research 35(4): 913-920.

Soobhany, N., Mohee, R., Garg, V.K., 2017. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Management 64 : 51–62.

Toledo, M., Gutiérrez, M.C., Peña, A., Siles, J.A., Martín, M.A., 2020. Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process Safety and Environmental Protection 139: 362-370.

Tortosa, G., Torralbo, F., Maza-Márquez, P., Aranda, E., Calvo, C., González-Murua, C., Bedmar, E.J., 2019. Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste (‘‘alperujo”) composting, Bioresource Technology 295: 122267.

Vernozy-Rozand, C., Mazuy-Chucradeut, C., Bavai, C., Richard, Y., 2004. Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Letters in Applied Microbiology 39(6): 490–494.

Vernozy-Rozand, C., Roze, S., 2003. Bilan des connaissances relatives aux Escherichia coliproducteurs de Shiga-toxines (STEC). French Food Safety Agency, Maisons-Alfort, France. 220p. Available at [access date: 10.02.2021]: https://www.anses.fr/fr/system/files/MIC-Ra-STEC.pdf  [in French].

Yanko, W.A., Walker, A.S., Jackson, J.L., Libao, L.L., Garcia, A.L., 1995. Enumerating Salmonella in biosolids for compliance with pathogen regulations. Water Environment Research 67(3): 364–368.

Zhao, T., Doyle, M.P., Shere, J., Garber, L., 1995. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Applied and Environmental Microbiology 61(4): 1290–1293.

Zucconi, F., Forte, M., Monaco, M., De Bertoldi, M., 1981. Biological evaluation of compost maturity. Biocycle 22 : 27–29.

 



Eurasian Journal of Soil Science