Eurasian Journal of Soil Science

Volume 6, Issue 2, Apr 2017, Pages 161-167
DOI: 10.18393/ejss.286629
Stable URL: http://ejss.fess.org/10.18393/ejss.286629
Copyright © 2017 The authors and Federation of Eurasian Soil Science Societies



Polluted soil leaching: unsaturated conditions and flow rate effects

X

Article first published online: 19 Dec 2016 | How to cite | Additional Information (Show All)

Author information | Publication information | Export Citiation (Plain Text | BibTeX | EndNote | RefMan)

CLASSICAL | APA | MLA | TURABIAN | IEEE | ISO 690

Abstract | References | Article (XML) | Article (HTML) | PDF | 57 | 237

Mathlouthi,C., Kacem,M., Mesticou,Z., Dubujet,P., 2017. Polluted soil leaching: unsaturated conditions and flow rate effects. Eurasian J Soil Sci 6(2):161-167. DOI : 10.18393/ejss.286629
Mathlouthi,C.Kacem,M.,Mesticou,Z.,& Dubujet,P. Polluted soil leaching: unsaturated conditions and flow rate effects Eurasian Journal of Soil Science, 6(2):161-167. DOI : 10.18393/ejss.286629
Mathlouthi,C.Kacem,M.,Mesticou,Z., and ,Dubujet,P."Polluted soil leaching: unsaturated conditions and flow rate effects" Eurasian Journal of Soil Science, 6.2 (2017):161-167. DOI : 10.18393/ejss.286629
Mathlouthi,C.Kacem,M.,Mesticou,Z., and ,Dubujet,P. "Polluted soil leaching: unsaturated conditions and flow rate effects" Eurasian Journal of Soil Science,6(Apr 2017):161-167 DOI : 10.18393/ejss.286629
C,Mathlouthi.M,Kacem.Z,Mesticou.P,Dubujet "Polluted soil leaching: unsaturated conditions and flow rate effects" Eurasian J. Soil Sci, vol.6, no.2, pp.161-167 (Apr 2017), DOI : 10.18393/ejss.286629
Mathlouthi,Chourouk ;Kacem,Mariem ;Mesticou,Zyed ;Dubujet,Philippe Polluted soil leaching: unsaturated conditions and flow rate effects. Eurasian Journal of Soil Science, (2017),6.2:161-167. DOI : 10.18393/ejss.286629

How to cite

Mathlouthi, C., Kacem, M., Mesticou, Z., Dubujet, P., 2017. Polluted soil leaching: unsaturated conditions and flow rate effects. Eurasian J. Soil Sci. 6(2): 161-167. DOI : 10.18393/ejss.286629

Author information

Chourouk Mathlouthi , Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes «LTDS», Ecole nationale d’Ingénieurs de Saint Etienne, France
Mariem Kacem , Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes «LTDS», Ecole nationale d’Ingénieurs de Saint Etienne, France
Zyed Mesticou , Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes «LTDS», Ecole nationale d’Ingénieurs de Saint Etienne, France
Philippe Dubujet , Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes «LTDS», Ecole nationale d’Ingénieurs de Saint Etienne, France

Publication information

Article first published online : 19 Dec 2016
Manuscript Accepted : 12 Dec 2016
Manuscript Received: 12 Sep 2016
DOI: 10.18393/ejss.286629
Stable URL: http://ejss.fesss.org/10.18393/ejss.286629

Abstract

In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

Keywords

Soil column, soil leaching, unsaturated soil, flow rate effect.

Corresponding author

References

AAEE, 1993. American Academy of Environmental Engineers. Soil Washing/Soil Flushing, Innovative Site Remediation. Anderson, W.C. (Ed), vol3, WASTEC.

Beesley, L., Moreno-Jimenez, E., Celemente, R., Lepp, N., Dickinson, N., 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution 158 (1) : 155-160.

BRGM, 1978. Carte géologique n°698 de Lyon, BRGM editions

BRGM, avril 2008. Bases de données relatives à la qualité des sols : contenu et utilisation dans le cadre de la gestion des sols pollués, V.0.1

Chappell, M., Middleton, M., Price, C., 2013. Chemical and physical changes in tropical soils from seawater exposure and subsequent rainwater washes. Procedia Earth and Planetary Science 7: 131-134.

Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., Coltorti, M., 2015. Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena 127: 64-71.

Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M., 2008.  Soil washing for metal removal : A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152(1): 1-31.

Fedje, K.K., Yillin, L., Strömvall, A.M., 2013. Remediation of metal polluted hotspot areas through enhanced soil washing- Evaluation of leaching methods. Journal of Environmental Management 128: 389-496.

Jean-Soro, L., Bordas, F., Bollinger, J.C., 2012. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environmental Pollution 164: 175-181.

Kalbe, U., Berger, W., Eckardt, J., Simon, F.G., 2008. Evaluation of leaching and extraction procedures for soil and waste. Waste Management 28(6): 1027-1038.

Kumar, M., Furumai, H., Kurisu, F., Kasuga, I., 2013. Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange: Comparison of leaching tests applied to soil and soakaway sediment. Chemosphere 90(2): 796-804.

Lafuente, A.L., González, C., Quintana, J.R., Vázquez, A., Romero, A., 2008. Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma 145(3-4): 238-244.

Li, Q.S., Liu, Y.N., Du, Y.F., Cui, Z.H., Shi, L., Wang, L., Li, H.J., 2011.  The behavior of heavy metals in tidal flat sediments during fresh water leaching. Chemosphere 82(6): 834-838.

Lo, I.M.C., Tsang, D.C.W., Yip, T.C.M., Wang, F., Zhang, W., 2011.  Influence of injection conditions on EDDS-flushing of metal-contaminated soil. Journal of Hazardous Materials 192(2): 667-675.

Matos, A.T., Fontes, M.P.F., da Costa, L.M., Martinez, M.A., 2011. Mobiblity of heavy metals as related to soil chemical and mineralogical charactristics of Brazilian soils. Environmental Pollution 111(3): 429-435.  

Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation.  Engineering Geology 60(1-4): 193-207.

Naka, A., Yasutakab, T., Sakanakuraa, H., Kalbec, U., Watanabed, Y., Inobad, S., Takeoe, M., Inuie, T., Katsumie, T., Fujikawaf, T., Satof, K., Higashinog, K., Someyag, M., 2010. Column percolation test for contaminated soils: Key factors for standardization. Journal of Hzardous Materials 320: 326-340.

Pang, L., Close, M., Schneider, D., Stanyon, G., 2002.  Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology 57(3-4): 241-258.  

Plassard, F., Winiarski, T., Petit-Ramel, M., 2000. Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology 42(2-4): 99-111.

Sposito, G., 1989. The chemistry of soils. Clarendon Press, Oxford, 277p.

Viglianti, C., De Brauer, C., Laforest, V., Bourgois, J., 2008. Meilleures techniques disponibles de lavage de sols contaminés par les HAP : Etude d’un procédé basé sur les cyclodextrines. Congrès International Gestion Déchets Solides et Développement Durable (GDS/DD), Hammamet, Tunisia. 6p,

Walden, R., 1964. Complément de chimie générale chimie descriptive, Tome II.

Wehrer, M., Totsche, K.U., 2008. Effective rates of heavy metal release from alkaline wastes — Quantified by column outflow experiments and inverse simulations. Journal of Contaminant Hydrology 101(1-4): 53-66.

Wennrich, R., Daus, B., Müller, K., Stärk, H.J., Brüggemann, L., Morgenstern, P., 2012. Behaviour of metalkoids and metals from highly polluted soil samples when mobilized by water –Evaluation of static versus dynamic leaching. Environmental Pollution 165: 59-66.

Yang, Z., Zhang, S., Liao, Y., Li, Q., Wu, B., Wu, R., 2012. Remediation of heavy metal contamination in calcareous soil by washing with reagents: A column washing. Procedia Environmental Sciences 16: 778-785.

Zhang, W., Huang, H., Tan, F., Wang, H., Qiu, R., 2010.  Influence of EDTA washing on the species and mobility of heavy metals residual in soils. Journal of Hazardous Materials 173(1-3): 369-376.

Abstract

In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

Keywords: Soil column, soil leaching, unsaturated soil, flow rate effect.

References

AAEE, 1993. American Academy of Environmental Engineers. Soil Washing/Soil Flushing, Innovative Site Remediation. Anderson, W.C. (Ed), vol3, WASTEC.

Beesley, L., Moreno-Jimenez, E., Celemente, R., Lepp, N., Dickinson, N., 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution 158 (1) : 155-160.

BRGM, 1978. Carte géologique n°698 de Lyon, BRGM editions

BRGM, avril 2008. Bases de données relatives à la qualité des sols : contenu et utilisation dans le cadre de la gestion des sols pollués, V.0.1

Chappell, M., Middleton, M., Price, C., 2013. Chemical and physical changes in tropical soils from seawater exposure and subsequent rainwater washes. Procedia Earth and Planetary Science 7: 131-134.

Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., Coltorti, M., 2015. Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena 127: 64-71.

Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M., 2008.  Soil washing for metal removal : A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152(1): 1-31.

Fedje, K.K., Yillin, L., Strömvall, A.M., 2013. Remediation of metal polluted hotspot areas through enhanced soil washing- Evaluation of leaching methods. Journal of Environmental Management 128: 389-496.

Jean-Soro, L., Bordas, F., Bollinger, J.C., 2012. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environmental Pollution 164: 175-181.

Kalbe, U., Berger, W., Eckardt, J., Simon, F.G., 2008. Evaluation of leaching and extraction procedures for soil and waste. Waste Management 28(6): 1027-1038.

Kumar, M., Furumai, H., Kurisu, F., Kasuga, I., 2013. Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange: Comparison of leaching tests applied to soil and soakaway sediment. Chemosphere 90(2): 796-804.

Lafuente, A.L., González, C., Quintana, J.R., Vázquez, A., Romero, A., 2008. Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma 145(3-4): 238-244.

Li, Q.S., Liu, Y.N., Du, Y.F., Cui, Z.H., Shi, L., Wang, L., Li, H.J., 2011.  The behavior of heavy metals in tidal flat sediments during fresh water leaching. Chemosphere 82(6): 834-838.

Lo, I.M.C., Tsang, D.C.W., Yip, T.C.M., Wang, F., Zhang, W., 2011.  Influence of injection conditions on EDDS-flushing of metal-contaminated soil. Journal of Hazardous Materials 192(2): 667-675.

Matos, A.T., Fontes, M.P.F., da Costa, L.M., Martinez, M.A., 2011. Mobiblity of heavy metals as related to soil chemical and mineralogical charactristics of Brazilian soils. Environmental Pollution 111(3): 429-435.  

Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation.  Engineering Geology 60(1-4): 193-207.

Naka, A., Yasutakab, T., Sakanakuraa, H., Kalbec, U., Watanabed, Y., Inobad, S., Takeoe, M., Inuie, T., Katsumie, T., Fujikawaf, T., Satof, K., Higashinog, K., Someyag, M., 2010. Column percolation test for contaminated soils: Key factors for standardization. Journal of Hzardous Materials 320: 326-340.

Pang, L., Close, M., Schneider, D., Stanyon, G., 2002.  Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology 57(3-4): 241-258.  

Plassard, F., Winiarski, T., Petit-Ramel, M., 2000. Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology 42(2-4): 99-111.

Sposito, G., 1989. The chemistry of soils. Clarendon Press, Oxford, 277p.

Viglianti, C., De Brauer, C., Laforest, V., Bourgois, J., 2008. Meilleures techniques disponibles de lavage de sols contaminés par les HAP : Etude d’un procédé basé sur les cyclodextrines. Congrès International Gestion Déchets Solides et Développement Durable (GDS/DD), Hammamet, Tunisia. 6p,

Walden, R., 1964. Complément de chimie générale chimie descriptive, Tome II.

Wehrer, M., Totsche, K.U., 2008. Effective rates of heavy metal release from alkaline wastes — Quantified by column outflow experiments and inverse simulations. Journal of Contaminant Hydrology 101(1-4): 53-66.

Wennrich, R., Daus, B., Müller, K., Stärk, H.J., Brüggemann, L., Morgenstern, P., 2012. Behaviour of metalkoids and metals from highly polluted soil samples when mobilized by water –Evaluation of static versus dynamic leaching. Environmental Pollution 165: 59-66.

Yang, Z., Zhang, S., Liao, Y., Li, Q., Wu, B., Wu, R., 2012. Remediation of heavy metal contamination in calcareous soil by washing with reagents: A column washing. Procedia Environmental Sciences 16: 778-785.

Zhang, W., Huang, H., Tan, F., Wang, H., Qiu, R., 2010.  Influence of EDTA washing on the species and mobility of heavy metals residual in soils. Journal of Hazardous Materials 173(1-3): 369-376.



Eurasian Journal of Soil Science